


## Cornell University Library

> The original of this book is in the Cornell University Library.

There are no known copyright restrictions in the United States on the use of the text.


GSMPACHim
noylaing

HARVEST TIME.

## THE <br> FARMERS' AND MECHANICS'

## MANUAL.

WITH MANY VALUABLE TABLES FOR MACHINISTS, MANUFACTURERS, MEEOEANTS, BUILDERS, ENGLNEERS, MASONS, PAINTERS, PLUMBERS, GARDENERS, ACCOUNTANTS, ETC.,

BY W. S. COURTNEY.

REVISED AND GNLARGED
BY GEORGE E. WARING, Jr.,
ADTHOR OF "ELEMENTS OF AGRTOULTDRF," "DRATNTNG FOL PROFTT AND BOR HEAITIL" "gARTH CLOEETG: HOW TO MAKE AND HOW TO UEE THEM," AND FORMERLY AGEIOULTURAL ENGLNEER OF THE OBNTRAL PARK, NEW YORE,

TWO HUNDRED ILLUSTRATIONS.
$\qquad$

SOLD ONLY BY SUBSCRIPTION.

NEW YORK:
E. B. TREAT \& CO., 654 BROADWAY;

TREAT \& LILLEY, CHICAGO; E. HANNAFORD \& CO., CINCINNATI; A. H. HUB BARD, PHILA.; A. L. TALCOTT \& CO., PITTSBURG; G. P. HAWKES \& OO., BOSTON; H. H. BANCROFT \& CO., SAN FRANCISCO; J. H. HUMMEL, NEW ORLEANS; J. C. DERBY, AUGUSTA, GA.

$$
\begin{aligned}
& \text { MANN } \\
& \text { SPEC. } \\
& \text { COLL. } \\
& S \\
& 501 \\
& \text { C86 } \\
& 1868
\end{aligned}
$$

Entered according to Act of Congress, in the year 1888, hy E. B. TREAT \& Co.,

In the Olerk's Office of the District Court of the United States for the Southern District of Now York.

## PREFACE.

There are few persons, no matter what their calling or their education, who do not occasionally find themselves at a loss for information of the commonest kind, on any of the subjects pertaining to the practical arts of daily life--knowledge which was, perhaps, familiar to them in their schoolboy days, but which has been forgotten or become obscured through the lapse of ycars. For example, how few persons can tell, without consulting books, the cubic inches contained in a bushel, the square yards in an acre, or how to measure the contents of a corn crib, or gauge a cistern. Nor is the iņability to do so any reflection upon either their native capacity or their education. It is simply impossible to carry all these things in the memory so as to apply them when occasion requires. Hence the necessity for "Hand-Books," " Mechanics' Assistants," "Pocket Companions," \&c.

Besides the labor involved in the almost daily necessity of calculating arithmetical, mensural, and other results, and the constant liability to error to which even the competent scholar is subject, the time required in the process, in this age, when time has emphatically acquired a money value, is no inconsiderable desideratum. Hence the necessity for "Ready Reckoners," "Pocket Accountants," " Calculators' Assistants," \&c.

In presenting this volume, a chief aim of the author was so to combine the Manual with the Reckoner, as to furnish the inquirer, in brief, with all the necessary rules and data and the elementary facts and axioms relating to almost every branch of industrial science, and particularly that of agriculture, and, at the same time, whenever it was possible, to compute and tabulate the results for him in the same connection. Hence he will find in the ensuing pages the axiomatical or elementary propositions, the data, the standards, the units, \&c., of almost every useful and practical art with which the farmer may have to deal, clearly stated, together with their simplest rules, illustrated by examples and solutions, and, wherever it was practicable, the arithmetical results calculated and tabularized.

Those who consult this book must remember that it is not a work of recipes, prescriptions, or of directions and advice as to the best mode of conducting any or all the various operations pertaining to agriculture, \&c. But they will bear in mind that the subjects of which this book treats are, for the most part, facts and figures-assured analyses and demonstrations-about which there can be no dispute. The design was to produce a work of substantial and enduring value, and of universal application and use-something in the sphere of agriculture corresponding to Haswell in Engineering, or Fairbairn in Mechanics. How far the author's labors have tended to that end remains to be tested by experience. He is sanguine of their ultimate fruition.

So vast is the domain of agriculture, that there are few of the mechanic arts of which the farmer does not require some information, and which he is often compelled to seek through many books and journals. . He is, in a certain sense, encyclopediac in his science and use. Hence many subjects
upon which he may require elementary knowledge and the assistance of computations may have escaped the vigilance of the author.
When a friend first suggested to the author the design of such a work, the latter had no adequate conception of the labor involved in such an undertaking. Although many of the tables were supplied or compiled from other authors, yet the labor involved in those he himself calculated and arranged was prodigious. Besides, the composition or typesetting of the matter was of the most tedious, dificult, and expensive kind, so that the volume of matter included within the covers would seem to bear no just proportion to the price the publisher is obliged to charge for it. Books much larger, and of many more pages of the ordinary composition, can be afforded at a much less cost. Withal, however, the author commends it to the favorable regard of those to whom it is addressed.

## TO THE PRACTICAL READER.

Having been long engaged in the various occupations into which a life of combined farming aud engineering is quite sure to lead any man of a practical turn of mind, I look back with regret on the days wasted in making long calculations to decide some simple question of size, or form, or quantity. Many a long day have I hunted through alcoves full of practical hand-books at the Astor Library, -scouring now the field of Agriculture, now of Mechanics, and now of Hydraulics,-often disappointed in my search, and compelled to go home and work far into the night, pursuing, through the long lanes of square and cube roots, the phantom of some every-day question of the discharge of water through pipes, the strength of material, or the resistance in ploughing.

I have always found less assistance than I had a right to expect from works written with the professed object of telling me what I wanted to know. After hunting them through, I have generally come to the conclusion that they contain almost everything except what I am looking for.

Certainly all that I have hitherto seen have been sadly incomplete.

Finally, I quite accidentally became acquainted with Mr. Courtney's Manual, and I found it much more nearly what it professes to be than any book that I had hitherto seen, for, although he very modestly complains of its incompleteness, it is undoubtedly much more thorough and accurate than are most works of its class.

The idea occurred to me, that by bringing my experience in the use of such books to bear upon the completion and amendment of Mr. Courtney's work, I might render a good service to the thousands who have almost daily occasion to consult a book of this character;-and in some degree make up for the loss that the community sustained in his death, although I cannot hope to bring to the task either the patience or the experience that constituted his great merit as a compiler.

It would be presumption to claim that, even in its enlarged and corrected condition, this book is complete, and all that could be desired, for there are more subjects of quite general interest to farmers and mechanics than could be properly catalogued in a book of this size. All that is claimed is, that so far as it goes it is correct; and that it goes as far, and in as many directions, as is compatible with its size and purpose.

The importance of having such a book as this always at one's elbow is very much greater than would at first sight be supposed by one who has not known the convenience of it.

How often, in farming, do we wish that we could know, on the spot, how to estimate the weight of hay in various conditions in the mow; the weight of cattle by measurement; the capacity of a grain bin; the weight of a piece of timber, or of a load of manure ; the distance apart to which to set trees or plants in order to get a certain number within a certain space; the size of an irregular field. How often in mechanics do we need to know the strength and measurement of masoury; the contents of cisterns and small vessels; the area of circles; the quality of cements ; the power value of fuel ; the weight of bar iron, or of lead pipe; the fusing heat of metals; the strength of materials; or the board measure of scantling.

And, worst of all, how sadly we accustom ourselves to get along without knowing these things! How much we lose by guessing instead of knowing!

The object of this book is to put it within the power of every practical man to know these details;-to leave less to guessing, and to enable him to guide his daily operations by the light of positive knowledge. If it accomplishes this purpose, neither Mr. Courtney nor I will have worked in vain.

In addition to the many tables and statements of valuable facts with which the book abounds, I have thought it advisäble to review very carefully all of its "agricultural" matter, and to add what I could, in the space allowed to me, that might be of interest to those farmers who care to look a little beyond the mere question of dollars and cents
in farming, and of value to those who believe (as, happily, a yearly increasing number dọ believe) that the road to surer and greater profit lies through the door that Science and Common Sense-the guardian angels of Agriculturehold open to them.

It has not been possible to do much in this direction, for the subject is a very extended one, but I think that many a young farmer, if he will consider well the principles that are laid down under the headings of "Plants," "Soils," and "Manures," will at least feel a desire to learn more of the simple truths which lie at the foundation of his practice.

I am sure, also, that it is not too much to say, that a careful study of the directions and the reasons for TileDraining will richly repay any occupier of cold, wet land for the purchase of the book.

This is a subject which, in this country at least, is still in the very early infancy of its progress. Not one acre in ten thousand of the land that it would pay well to drain in the best manner, has yet felt the benefit of the operation; and not one farmer in a thousand has the faintest conception of the fact,-a fact that ample experience, here and in Europe, has fully demonstrated,- that he can no more afford to farm an undrained heavy soil, than a carpenter can afford to work with a dull tool.

I have introduced another novelty into the work, under the head of "The Dry Earth System." This is a bantling that has raised its head within a very few years, and is only now coming to be recognized at its full value; but it is
ushered before our attention with all the force that consideration of decency, health, and economy can lend; and the most thoughtful attention is asked for its claims. It is really the coming Reform, and promises more for civilization, and for national prosperity, than any improvement that has yet been brought to the notice of the public.

To sum up, then : this book is offered as containing more that has been proven by long use to be of value; more that it is most necessary for every farmer and mechanic to know ; and more of promising novelty, than any other that has ever been presented to the farmers and mechanics of America.

It is complete in every particular in which it is possible for such a book to be complete, and, in addition to this, it is sufficiently suggestive in many other respects to induce its readers to read more, to think more, to experiment more, and to become more intelligent and more successful in the management of their business, as well as really happier and wiser men.

If it should be thought that I claim too much for a single Hand-Book, which is mainly filled with dry details concerning the measurement of boards, and the spacing of trees in an orchard, I trust that I shall at least not be condemned as an enthusiast until the reader has taken the trouble to examine carefully what I have to say, and to consider well to what better things the helping hand of Nature may lead him if he has the wisdom to heed its beckonings.

Geo. E. Waring, Jr.
Oaden Farm, Newport, R. I., September, 1868.

From the New York Tribune.
A new edition of "The Farmers' and Mechanics' Mandax," by W. S. Courtney, deceased, revised and enlarged by George E. Waring, Jr., introduces several improvements on the original work, forming a valuable book of general reference on practical affairs. It comprises a variety of tables and rules, and a thousand other points which perpetually occur in the experience of industrial life, and which are often decided by guess rather than by knowledge. The agricultural portions of the volume have been thoroughly revised by Mr. Waring, who has also enriched it with a variety of original matter, especially in relation to his favorite topics of "Tile-Draining," "The Dry Earth System," and others. In its present form, the work challenges the attention of every tiller of the soil and every lover of improvement. It is a sound, honest, instructive publication, doing all which it professes to do, and more, full of information suited not only to put money into the purse of the farmers and mechanics who consult its pages, but to increase their stock of valusble intelligence, and add to their resources for a happy and useful life.

From the New York Evening Post.
Farmers' and Meghantes' Mandal.-The work, as its title implies, is designed not less for the wants of the mechanic than the husbandman, but for hoth it would not be easy to exaggerate its usefulness. The entire matter of measurement, in its connection with weight, bulk, liquid contents, distance and superficial area, is exhausted in the simple tables and diagrams which constitute a large part of the text, and by means of these the mechanic or farmer may in a moment resolve a problem which might otherwise occupy a day.

Besides the tabular information which the book contains, there are hints upon the subjects of drainage, manures, stock-raising, rotation of crops, gardening for market, and steam cultivation, which the agriculturist will thankfully receive. In one respect the book is entitled to very high commendation-the accuracy of its typography. Crowded as it is with figures, but seven errata have been discovered in its five hundred pages. Messrs. Courtney and Waring have performed a most laborious and meritorious public service in its preparation. The moderate price at which it is offered to the public, three dollars a copy, must insure it an extended circulation.

## From the Rural New Yorker.

This is a valuable and will be found a useful book to almost all classes of business men. Facts and figures of practical utility relating to all sorts of industry, the results of patient, elaborate calculation, are here crystallized into a condensed form ready for use, and so far as we have had opportunity to examine, the rules and tables are correct. We recommend it cordially to our readers.

From the New York Day-Book.
It would not answer for us to give a table of the contents of this very excellent and practical book, as an alphabetical arrangement of the same shows no less than eight handred different items of information of value to the mechanic, manufacturer, merchant, builder, ongineer, mason, painter, plumber, farmer, gardener, accountant, etc. The book is fairly crammed with solid and useful knowledge suited to these trades and professions; and it would seem as if the compilers themselves must have had years of service in each of these branches to arrive at so complete an understanding of what each branch ought to know. It is one of the most complete books of the day, and every member of the above professions should own a copy.

## From the Hartford Courant, Conn.

A Valdagle Book for All.-One of the most useful and valuable books for farmers, meehanice and working men which we have seen, is "The Farmmas' and Mechanics" Mandal." It is the useful and comprehensive "Mandal" of W. S. Courtney, now deceased, and revised and enlarged by George E. Waring, Jr. It contains a great amount of information and statistics, arranged conveniently for referenoe, concorning matters that every farmer, mechanio and business man must inform himself about almost every day. It is an invaluable hand-book and book of reference.

## From San Francisco Bulletin, Cal:

We have been favored with a look at a work entitled "The Fabmens' and Meohanios' Mandal." which we are sure is destined to achieve a marked success; and do not hesitate to add our unqualified commendation of the aim and execution of the work.

From W. S. Clank, Esq., President of the Massachusette Agricultural College.
Please accept thanks for a copy of a very useful book, styled "The Farmers' and Mechanios' Mantal." It is full of valuable informatiod, and Mr. Waring's name is a sufficient guarantee of its correctness. I shall advise my students to act as agents for its sale.

## LIST OF ILLUSTRATIONS.

enerativgs. PAGH

1. Harvest Time Frontispiece
2. Illustrating Seasons, Longitdde, 180 ..... 19-22
3. " Circdlar Measure ..... 23,24
4. ". Measure of Time ..... 25-30
5. " Pendolums ..... 31
6. $\quad$ " W EATHER. ..... 34
$2 . \quad$ " Windmille ..... 35, 36
7. " Meastrement of Land ..... 43-46
8. " Government Land Measure ..... 50
9. 6 Measdrement of Hay ..... 51-56
$2 . \quad$ " " "Corn in the Crib ..... 57-59
10. ${ }^{1}$ " "Grain In Granaries ..... 60
11. " " Tmber ..... 61
12. " ..... "
"WOOD ..... 62
$1 . \quad 6$ " " Round Timber. ..... 64
13. $\quad 4$ Gauging of Casks ..... 79,80
14. $"$ Capaoity of Wagon Beds. ..... 82, 83
15. " False Balanoes. ..... 84, 85
16. Cisterns ..... 86-92
17. 4 Hydradios. ..... 97
18. " Hydratlio Ram. ..... 102-109
19. " 6 Press ..... 110
20. " FUEL ..... 115-124
21. Fenoes ..... 125
22. $u$ HeDGES ..... 133
23. 4 Horse Power ..... 137
24. 4 Plodgeing. ..... 141
25. 4 Freighting Vessels ..... 142-144
26. " Untted States Money ..... 145-148
27. English Money ..... 149-151

## LIST OF ILLUBTRATIONE.

|  | avinges. <br> Ihlustrating | Avoirdipois Weight. | $152-154$ |
| :---: | :---: | :---: | :---: |
| 5. | " | Troy " | 156, 157 |
| 6. | 4 | Apotheoaries' " ........ .......... | 158, 159 |
| 5. | ${ }_{6}$ | Liquid Meastre . . . . . . . . . . . . . . . . . . . . | 160, 161 |
| 6. | ${ }^{6}$ | Dry u ...................... | 162-164 |
| 1. | * | Square 4 ........................ | 165 |
| 1. | ${ }_{6}$ | Long " | 167 |
| 4. | ${ }_{6}$ | Curio " ......................... | 170, 171 |
| 2. | 6 | Metrio Sfstem of Weights and Measures | 177 |
| 1. | " | Spedifio Gravity. | 183 |
| 1. | * | Corm and Pork. | 196 |
| 1. | 4 | Life and Inorease of Animals. | 197 |
| 4. | " | The Age of Animals.................. | 201-205 |
| 2. | ${ }^{6}$ | " Compdted Weioht of Cattle...... | 209-211 |
| 2. | ${ }^{6}$ | " Food of Anmals. | 212-215 |
| 1. | 4 | Ligmtning Rods. | 250 |
| 1. | " | Weight of Square and Romled Iron.... | 273 |
| 1. | * | Masonry. | 276 |
| 1. | 4 | Meorantoal Powers-Inclined Plane. | 282 |
| 1. | " | " " WEDGE | 286 |
| 1. | " | " " Sorew. | 288 |
| 1. | " | " " Pulley. | 290 |
| 24. | ، | Mathematioau Definitions. . . . . . . . . . . . . | 292-295 |
| 1. | " | Manures. . . . . . . . . . . . . . . . . . . . . . . . . . | 327 |
| 21. | ${ }^{6}$ | Tme Dratning. . . . . . . . . . . . . . . . . . . . . . | 363-372 |
| 1. | 6 | Butter and Cheese...................... | 400 |
| 3. | ${ }^{6}$ | Steaming Food for Stook................ | 414-423 |
| 1. |  | Gardening for Market . . . . . . . . . . . . . . . . | 428 |
| 1. | 6 | Steam Plodghing. . . . . . . . . . . . . . . . . . . . . | 448 |

## COMMERCIAL ABBREVIATIONS.

| @., | At. | Fr't., | Freight. |
| :--- | :--- | :--- | :--- |
| a/c., | Account. | Inst., | This month. |
| ¢., | Cents. | Int., | Interest. |
| At | Number. | Mdse., | Merchandise. |
| Anc't., | Amount. | Mo., | Month. |
| Ass'd., | Assorted. | Net, | Without discount. |
| Bal., | Balance. | No., | Number. |
| BbL., | Barrel. | Pay't., | Paymeni. |
| Blk., | Black. | Pk'gs., | Packages. |
| Cons't., | Consignment. | Per or pr., | By. |
| Dft., | Draft. | Prem., | Premium. |
| Disc't., | Discount. | Prox., | Next month. |
| E. E., | Errors excepted. | Ps., | Pieces. |
| Exps., | Expenses. | Sunds., | Sundries. |
| Fol., | Folio. | Ult., | Last montm. |
| Fwd., | Forwarded. |  |  |

## EXPLANATION OF ARITHMETICAL CHARACTERS USED IN THIS BOOK.

$=$ Equal ; as 12 inches $=1$ foot, or $4 \times 5=20$.

+ Plus or more ; signifies addition, as $3+5+7=15$.
- Minus or less ; signifies subtraction, as 12-4=8.
$\times$ Multiplied by; signifies multiplication, as $8 \times 7=56$.
$\div$ Divided by; signifies division, as. $56 \div 8=7$.
: :: : Proportion; as 2:4::8:16; that is, as 2 is to 4 so is 8 to 16 .
$\checkmark$ Prefixed to a number denotes that the square root of that number is requircd, as, $\vee 36=6$.
${ }^{8}$, Prefixed to a number denotes that the cube root of that number is reqnired, as, ${ }^{8} \downarrow 27=3$.

2 Added to a number signifies that the number is to be squared, as $4^{9}$ means that 4 is to be multiplied by 4.

- Added to a number signifies that the number is to be cubed, as $4^{2}$ means $4 \times 4 \times 4=64$.
- Decimal point, when prefixed to a number signified that that number has an unit (1) for lts denominator, as .1 is $\frac{1}{10}, .2$ is $\frac{2}{\infty}, .12$ is $\frac{1}{10}, .125$ is $-125, \& c$.
- Slgnifies degrees: ' minutes, and " seconds.


## SEASONS, LONGITUDE, \&o.



To reduce longitude to time.
The English count their degrees of longitude east and west from Greenwich, which, owing to our early dependence upon the mother country for books and science, became extensively adopted in this country, and still prevails to a considerable extent, especially in our nautical charts, and
works on navigation. But by an act of Congress, passed some thirty years ago, the meridian of Washington was established as the point of departure, and accordingly our maps, charts, \&c., have since been adapted to that meridian.

The sun passes over a degree of longitude in 4 minutes -the $360^{\circ}$ in 24 hours. Thus, when we travel west, or on a line with the sun, our watch is four minutes fast for every 60 geographical miles we travel. If we travel east, or on a line with the sun, it is four minutes slow for every degree we travel. Hence, when it is noon at Greenwich, that is, when the sun is on the meridian there, if we multiply $74^{\circ}$, the longitude of New York west from Greenwich, by 4 , and subtract the result from 12 o'clock M., it will give the corresponding time at New York. Thus, $74^{\circ} \times 4=296$ minutes, which, divided by 60 , gives 4 hours and 56 minutes for the sun to travel from Greenwich to New York. Subtracting this from 12 o'clock (the Greenwich time) gives 7 o'clock and 4 minutes A.M. as the corresponding time at New York. So also by reverse, when it is noon at New York, it is 4 hours and 56 minutes past noon at Greenwich. Hence results the following

Role.-Multiply the number of degrees, minutes, and seconds west or east of the given meridian by 4 , reduce the product to hours, \&c., and for west longitude subtract
from 12 hours, and for east longitude add to 12 hours (i.e., so many hours past 12), and the result will be the corresponding time.

Example.-Required the time at longitude $50^{\circ} 31^{\prime}$ west, corresponding to noon at Greenwich ?

Solution.-50 $0^{\circ} 31^{\prime} \times 4=3$ hours $22 \mathrm{~min} .4 \mathrm{sec} .-12=8$ h. $37 \mathrm{~min} .56 \mathrm{sec} . \mathrm{A} . \mathrm{M} . ~ A n s$.

Note.-Time is both apparent and mean. The sun is on the meridian at 12 o'clock on four days only in the year. It is sometimes as much as $16 \frac{1}{4}$ minutes before or after 12 when its shadow strikes the noon mark on the sundial. This is occasioned by the irregular motion of the earth on its axis and the inclination of its poles. This is called apparent time. Mean time is determined by the equation of these irregularities for every day in the year, and is noted in all good almanacs. The latter is the true or correct time. The foregoing rule is applicable to either.

When you buy an almanac, buy one that expresses on each calendar page the mean time when the sun reaches the meridian, or the shadow the noon-mark on the dial, and set your time-piece fast or slow as indicated in the almanac.

## To ascertain the length of the day and night.

At any time in the year, add 12 hours to the time of the sun's setting and from the sum subtract the time of rising
for the length of the day. Subtract the time of setting from 12 hours, and to the remainder add the time of rising the next morning for the length of the night. This rule is true of either apparent or mean time.

## CIRCULAR OR ANGULAR MEASURE.

This Measure is used to measure angles or the arcs of circles. It is used in astronomy, geography, navigation, and surveying, and for calculating differences of time.


4 quadrants or
12 signs $\} 1\left\{\begin{array}{c}\text { circumference } \\ \text { or circle }\end{array}\right.$ " cir.
Notes.-1. The greatest distance across a circle is called its diameter. The distance around it is called its circumference. Any part of the circumference is called an arc.
2. If any circumference, whether large or small, be di-
 tided into 360 equal arcs, each arc is called a degree. The

## 24

 CIRCULAR OR ANGULAR MEASURE.degree is divided into 60 minutes, and the minute into 60 seconds. The length of a degree, minute, or second, depends on the size of the circle. If the size of the circle is increased or decreased, the length of the degree, minute, or second is also increased or decreased.
3. The greatest circumference of the earth's surface is about 24,930 miles ; $1^{\circ}$ of that circumference is one 360 th of 24,930 miles, which is $69 \frac{1}{4}$ miles.
4. A geographical or nautical mile is equal to $1^{\prime}$ of the earth's greatest circumference, which is found to be a little more than one statute mile and 49 rods.
5. Latitude is measured north or south from the equator on any meridian, and is expressed in degrees, minutes, and seconds; thus, $-43^{\circ} 17^{\prime} 31^{\prime \prime}$ north lat. denotes a position $43^{\circ} 17^{\prime} 31^{\prime \prime}$ north from the equator.
6. The linear extent of a degree of longitude depends upon the latitude, and diminishes as the latitude increases; thus, at latitude $10^{\circ}$ its extent is 359640 feet; at lat. $40^{\circ}$ it is 280106 feet; and at lat. $80^{\circ}$ it is only 63612 feet.




The calendar year is divided as follows:

Season.
Months.
No. of days.
Winter
$\left\{\begin{array}{l}\text { 1. January } \\ \text { 2. February }\end{array}\right.$
.31
28 or 29
31
30
31
Summer $\left\{\begin{array}{l}6 \\ 7 \\ 8\end{array}\right.$
Autumn $\begin{cases}9, & \text { September } \\ \text { 10, } & \text { October } \\ \text { 11. } & \text { November }\end{cases}$
Winter - 12. December
7. July

30
31
31
30
31
30
31

365 or 366.

Abbreviations.

| Jan. |
| :--- |
| Feb. |
| Mar. |
| Apr. |

Jun.

Aug.
Sept.
Oct.
Nov.
Dec.

Notes.-1. The exact length of the solar year is 365 days 5 h .48 min .49 sec ; but, for convenience, it is reckoned 11 min .11 sec. more than this, or 365 da. $6 \mathrm{~h} .=365 \frac{1}{4}$ days. This $\frac{1}{4}$ day in four years makes 1 day, which every fourth year (called Bissextile or leap year) is added to the shortest month, giving it 29 days. The numbers de-
noting leap years are exactly divisible by 4 ; as, 1856,1860 , 1864 ; except years whose number can be divided without a remainder by 100, but not by 400 .
2. Owing to an error in the Julian calendar, it was decreed by the British Government that the day following the second day of September, 1752, should be called the fourteenth day of September, or that 11 days should be stricken from the calendar.
3. Time, previous to this decree, is called Old Style (O. S.), and since, New Style (N. S.). Russia still reckons time by the Old Style, hence their dates are 12 days behind ours.
4. In most business transactions 30 days are called a month, and 52 weeks a year.
5. The centuries are numbered from the commencement of the Christian era; the months from the commencement of the year; the days from the commencement of the month ; and the hours from the commencement of the day (12 o'clock, midnight), and from mid-day or noon. A.m. denotes time before noon, m., at noon, and p.m., after noon. Thus, 9 o'clock A.m., May 23,1860 , is the end of the ninth hour of the 23 d day of the fifth month of the 60 th year of the 19th century.
6. A decade is a period of 10 years.
7. The Lunar Cycle, or Golden Number, is a period of 19 years, after which the changes of the moon return on the same days of the month.

8．The Solar Cycle is a period of 28 years，when the days of the week again return to the same days of the month．

To find the golden number or lunar cycle．
Rule．－Add 1 to the given year；divide the sum by 19， and the remainder is the golden number．

Example．－What is the golden number for 1857？
Solotion．－1857＋1 $\div 19=97$ ，rem．15．Ans．
Note．－If 0 remain，it will be 19．Hence，in 1861，the changes of the moon occur on the same days of the month they did in 1842，1823，1804，\＆c．
Table showing the number of days from any day in one month to the same day in any other．

| FROM |  |  | 寝 | 荡 | 宊 | 品 | $\stackrel{\circ}{5}$ | $\frac{80}{4}$ | $\begin{gathered} \stackrel{\rightharpoonup}{\ddot{~}} \\ \stackrel{\Delta}{\circ} \end{gathered}$ | ¢ | $\begin{aligned} & \text { 呙 } \\ & \hline \end{aligned}$ | ®． |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| January | 365 |  | 59 |  | 120 | 151 | 181 | 212 |  | 273 | 304 | 334 |
| Februar | 334 | 365 | 28 | 59 | 89 | 120 | 150 | 181 | 212 | 242 | 273 | 303 |
| March． | 306 | 337 | 365 | 31. | 61 | 92 | 122 | 158 | 184 | 214 | 245 | 275 |
| April． | 275 | 306 | 334 | 365 | 30 | 61 | 91 | 122 | 153 | 183 | 214 | 244 |
| May | 245 | 276 | 304 | 335 | 365 | 31 | 61 | 92 | 123 | 153 | 184 | 14 |
| June | 214 | 245 | 273 | 304 | 334 | 365 | 30 | 61 | 92 | 122 | 153 | 183 |
| Jaly | 184 | 215 | 243 | 274 | 304 | 335 | 365 | 31 | 62 | 2 | 123 | 153 |
| August． | 153 | 184 | 212 | 243 | 273 | 304 | 334 | 365 | 31 | 61 | 92 | 122 |
| Septembe | 122 | 153 | 181 | 212 | 242 | 273 | 304 | 334 | 365 | 30 | 61 | 91 |
| Oetober． | 92 | 128 | 151 | 282 | 211 | 243 | 273 | 304 | 335 | 365 | 31 | 61 |
| Novemb | 61 | 92 | 120 | 151 | 181 | 212 | 242 | 273 | 304 | 334 | 365 | 30 |
| De | 31 | 62 | 90 | 121 | 151 | 182 | 212 | 243 | 274 | 304 | 385 | 65 |

Explanation．－Find，in the left－hand column，the month from any day of which you wish to compute the number of days to the same day in any other month，and follow the line along until under the latter，and you have the
required number of days. Thus, from the 12th of April to the 12th of October, is 183 days; from the 7 th of March to the 7 th of June, 92 days.

Table for finding the number of days between two datesnew method.

| Jan. | Fel. | Mar. | April | May | June | July | Aug. | Sept. | Oct. | Nov. | Dec. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 32 | 60 | 91 | 121 | 152 | 182 | 213 | 244 | 274 | 305 | 335 |
| 2 | 33 | 61 | 92 | 122 | 153 | 183 | 214 | 245 | 275 | 306 | 336 |
| 3 | 34 | 62 | 93 | 123 | 154 | 184 | 215 | 246 | 276 | 307 | 337 |
| 4 | 35 | 63 | 94 | 124 | 155 | 185 | 216 | 247 | 277 | 308 | 338 |
| 5 | 36 | 64 | 95 | 125 | 156 | 186 | 217 | 248 | 278 | 309 | 339 |
| 6 | 37 | 65 | 96 | 126 | 157 | 187 | 218 | 249 | 279 | 310 | 340 |
| 7 | 38 | 66 | 97 | 127 | 158 | 188 | 219 | 250 | 280 | 311 | 341 |
| 8 | 39 | 67 | 98 | 128 | 159 | 189 | 220 | 251 | 281 | 312 | 342 |
| 9 | 40 | 68 | 99 | 129 | 160 | 190 | 221 | 252 | 282 | 313 | 343 |
| 10 | 41 | 69 | 100 | 130 | 161 | 191 | 222 | 25 | 283 | 314 | 344 |
| 11 | 42 | 70 | 101 | 131 | 162 | 192 | 223 | 254 | 284 | 315 | 345 |
| 12 | 43 | 71 | 102 | 132 | 163 | 193 | 224 | 255 | 285 | 316 | 346 |
| 13 | 44 | 72 | 103 | 133 | 164 | 194 | 225 | 256 | 286 | 317 | 347 |
| 14 | 45 | 73 | 104 | 134 | 165 | 195 | 226 | 257 | 287 | 318 | 348 |
| 15 | 46 | 74 | 105 | 135 | 166 | 196 | 227 | 258 | 288 | 319 | 349 |
| 16 | 47 | 75 | 106 | 136 | 167 | 197 | 228 | 259 | 289 | 320 | 350 |
| 17 | 48 | 76 | 107 | 137 | 168 | 198 | 229 | 260 | 290 | 321 | 351 |
| 18 | 49 | 77 | 108 | 138 | 169 | 199 | 230 | 261 | 291 | 322 | 352 |
| 19 | 50 | 78 | 109 | 139 | 170 | 200 | 231 | 262 | 292 | 323 | 353 |
| 20 | 51 | 79 | 110 | 140 | 171 | 201 | 282 | 263 | 293 | 324 | 354 |
| 21 | 52 | 80 | 111 | 141 | 172 | 202 | 233 | 264 | 294 | 325 | 355 |
| 22 | 53 | 81 | 112 | 142 | 173 | 203 | 234 | 265 | 295 | 326 | 356 |
| 23 | 54 | 82 | 113 | 143 | 174 | 204 | 235 | 266 | 296 | 327 | 357 |
| 24 | 55 | 83 | 114 | 144 | 175 | 205 | 236 | 267 | 297 | 328 | 358 |
| 25 | 56 | 84 | 115 | 145 | 176 | 206 | 287 | 268 | 298 | 329 | 359 |
| 26 | 57 | 85 | 116 | 146 | 177 | 207 | 248 | 269 | 299 | 330 | 360 |
| 27 | 58 | 86 | 117 | 147 | 178 | 208 | 239 | 270 | 300 | 331 | 361 |
| 28 | 59 | 87 | 118 | 148 | 179 | 209 | 240 | 271 | 301 | 332 | 362 |
| 29 |  | 88 | 119 | 149 | 180 | 210 | 241 | 272 | 302 | 333 | 363 |
| 30 |  | 89 | 120 | 150 | 181 | 211 | 242 | 273 | 303 | 334 | 364 |
| 31 |  | 90 |  | 151 |  | 212 | 243 |  | 304 |  | 365 |

Note.-To find from the above table the number of days between two dates, we give the following-

Rule.-I. When the dates are in the same year, subtract the number of days of the earlier date from the number of days of the later date; the result will be the number of days required.
II. When the dates are in consecutive years, subtract the number of days of the earlier date from 365, and add to the remainder the number of days of the later date; the result will be the number of days required.

When the year is a leap year, add one day to the result.


## PENDULUMS.



The vibrations of pendulums are as the square roots of their lengths. The length of one that will vibrate seconds in New York, at the level of the sea, is 39.1013 inches.

To find the length of a pendulum for any given number of vibrations per minute.

Rule.-As the number of vibrations given is to the square root of 39.1013 inches, so is 60 to the square root of the length of the pendulum required.

Example.-What is the length of a pendulum that will make 50 vibrations per minute?

Solution.-50: 6.25 (the sq. root of 39.1013 ): $60: 7.5$, then $7.5^{2}=56.25$ inches. Ans.

To find the number of vibrations per minute, the length of the pendulum being given.

Rule.-As the square root of the length of the pendulum is to 60 , so is the square root of 39.1013 to the number of vibrations required.

Example.-How many vibrations will a pendulum 64 inches long make in a minute?

Solution.-8 (square root of 64) : $60:: 6.25$ (sq. root of 39.1013) : 46.875 vibrations. Ans.

Table showing the planets, comparative size, dec., in the solar system.

| NAMES. | Mean Diameter. | Mean diatance from the Sun. | Revolu: tion ar'd the Suz. | $\begin{aligned} & \text { Revoln- } \\ & \text { tion on } \\ & \text { exis. } \end{aligned}$ |  | Size-the Earth being 1. |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Miles. | Miles. | yrs. days | d. h. m. | Miles |  |  |  |
| The Sun. | 883,246 |  |  | 25.959 |  | 1,412,921.100 | 0.252 | in6n. |
| Mercary | 3,224 | 36,814,000 | 88 | $1 \begin{array}{lll}1 & 0 & 5\end{array}$ | 1827 | 0.053 | 1.120 | 6.680 |
| Veous... | 7,687 | 68,787,000 | 224 | -. 2321 | 1,338 | 0.909 | 0.923 | 1.911 |
| The Earth | 7,912 | 95,103,000 | 1 | $\square 2358$ | 1,138 | 1.000 | 1.000 | 1.000 |
| The Moon | 2,180 | 95,103,000 | 1 | $27 \quad 743$ | 38 | 0.020 | 0.615 | 1.000 |
| Mars.. | 4,189 | 144,908,000 | 1321 | $1 \begin{array}{lll}1 & 0 & 37\end{array}$ | 921 | 0.125 | 0.948 | 0.431 |
| Jupiter. | 89,170 | 494,797,000 | 11215 | .. 9566 | 498 | 1,456.000 | 0.238 | 0.037 |
| Saturn. | 79,042 | 907,162,000 | 29167 | .. 1029 | 368 | 771.000 | 0.138 | 0.011 |
| Uranus. | 35,112 | 1,824,290,000 | 84 | 11383 | 259 | 80.000 | 0.242 | 0.008 |
| Neptune. | 41,500 | 2,854,000,000 | 16422 | . | 208 | 143.000 | 0.140 | 0.001 |

## THE WEATHER.

The following table, and the accompanying remarks, originally formed by Dr. Herschel, and approved with some alterations by the experienced Dr. Adam Clarke, are the result of many years' close observation; the whole being on a due consideration of the attraction of the sun and moon, in their several positions respecting the earth, and will, by inspection, show the observer what kind of weather will most probably follow the entrance of the moon into any of its quarters-so probably, indeed, that it has seldom been found to fail.
Table, for telling the weather through all the lunations of each year forever.

| moon | time of crangs. | n SUMMEr. | m Winter. |
| :---: | :---: | :---: | :---: |
|  |  | Faif. <br> Cnld, with fraquent $\}$ ahowera. <br> Rain. <br> Wind and rain. <br> Changeabla. <br> Fraquent ahowers. <br> Very rainy. <br> Changeable. <br> Fair. <br> $\left\{\begin{array}{l}\text { Fair, if wind N. W. } \\ \text { Rainy, if S. or S. W. }\end{array}\right\}$ <br> Do. <br> Fair. | Hard froat, unlesa the wind be S. or W. <br> Snow and stormy. <br> Rain. <br> Stormy. <br> Cold rain, if wind ba W. ; anow if E . <br> Cold and high wind. <br> Snow nr rain. <br> Fair and mild. <br> Fair. <br> Fair and frosty, if wind N. or N. E. <br> Rain or enow, if S. or S. W. <br> Do. <br> Fair and froaty. |

Obeervations.-1. The nearer the time of the moon's
change, first quarter, full, or last quarter are to midnight, the fairer will the weather be during the seven days following.
2. The space for this calculation occupies from ten at night till two next morning.
3. The nearer to mid-day or noon, the phases of the moon happen, the more foul or wet weather may be expected during the next seven days.
4. The space of this calculation occupies from ten in the forenoon to two in the afternoon. These observations refer principally to the summer, though they affect spring and autumn nearly in the same ratio.



The force of the wind increases directly as the square of the velocity. Thus, a wind blowing 10 miles an hour exerts a pressure four times as great as at 5 miles an hour, and 25 times as great as at 2 miles an hour.

To find the force of wind acting directiy against a surface.

Rule.-Multiply the surface in square feet by the lbs. pressure per square foot as given in the following table.

Example.-What is the pressure of a wind of a relocity of 20 miles per hour against a barn door 10 feet by 6 ?

Solution. $-10 \times 6=60 \mathrm{sq}$. ft., surface, $\times 2$ lbs., pressure per square foot, $=120 \mathrm{lbs}$. Ans.

| Miles per hour. | Feet per minute. | Lbs pressure on 1 sq. foot. | Description. |
| :---: | :---: | :---: | :---: |
| 1 | 88 | . 005 | Barely observable. |
| 2 | 176 | . 020 \} | Just perceptible. |
| 3 | 264 | . 045 |  |
| 4 | 352 | . 080 | Light breeze. |
| 5 | 440 528 | . 1280 | Gentle. pleasant wind. |
| 8 | 704 | . 320 |  |
| 10 | 880 | . 5000 | Brisk blow. |
| 15 | 1320 | 1.125 |  |
| 20 | 1760 | $\left.\begin{array}{l}2.1000 \\ 3.125\end{array}\right\}$ | Very brisk. |
| 25 30 | 2200 2640 | 3.125 4.500 | Very brian |
| 35 | 3080 | $6.125\}$ | High wind. |
| 40 | 3520 | $8.000\}$ | Very high. |
| 45 | 3960 | 10.125 12.500 |  |
| 50 60 | 4400 5280 | 12.500 18.000 | Storm. |
| 80 | 7040 | 32.000 | Hurricane. [ing off buildings, \&c. |
| 110 | 8800 | 50.000 | Tornado, uprooting trees, sweep- |

The mechanical force of wind is well illustrated in the old-fashioned windmills; which were used for the purpose of

raising water and grinding grain, where facilities for steam or water-power were wanting.

## AVERAGE TEMPERATURE AND FALL OF RAIN.

Table, showing the average temperature of the four Seasons at points on the Pacific and Atlantic coasts, and the interior of this continent.

|  | temperature. |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Latitude. | Spring. | Summer | Autuma | Winter | Year. |
| Pacifio Coast. |  |  |  |  |  |  |
| Monterey, | $36^{\circ} 36^{\prime}$ | $530 \cdot 99$ | $580 \cdot 64$ | $57^{\circ} \cdot 29$ | 51022 | 550.29 |
| San Francisco. | $37048^{\prime}$ | $54^{0 \cdot 41}$ | 570.33 | $56^{\circ} 83$ | $50^{\circ} 86$ | $54^{0.88}$ |
| Astoria. | $46^{\circ} 11^{\prime}$ | $51^{\circ} 16$ | $610 \cdot 58$ | $53 \times 16$ | $42 \cdot 33$ | 520.23 |
| Interior. |  |  |  |  |  |  |
| St. Louis Arsenal,.. | $38>40{ }^{\prime}$ | 540-15 | $760 \cdot 19$ | $550 \cdot 44$ | $32 \mathrm{C} \cdot 27$ | $54 \times 151$ |
| Chicago,........ | $41^{\circ} 52^{\prime}$ | 44090 | $670 \cdot 33$ | $480 \cdot 85$ | $25 \mathrm{c} \cdot 90$ | $46^{\circ} \cdot 75$ |
| Fort Ripley. . . . . . . . . . . . . . . . | $46^{\circ} 19$ | 390.33 | $64^{\circ} 94$ | $420 \cdot 91$ | $10^{C} 01$ | $390 \cdot 30$ |
| Arlantro Coast. Fort Monroe, near Norfolk | 370 | 560.87 | $760 \cdot 57$ | 610.68 | $40 \cdot 45$ | $580 \cdot 89$ |
| Fort Columbus. N. Y. Harbor, | ${ }^{4} 0^{\circ} 42^{\prime}$ | $480 \cdot 74$ | $720 \cdot 10$ | 54055 | $310 \cdot 38$ | $510 \cdot 69$ |
| Fort Sullivan. Eastport,....... | $44^{\circ} 15^{\prime}$ | $40^{\circ} \cdot 15$ | 600.50\| | $47^{\circ} 52$ | $23^{\circ} 90$ | 430.02 |

From this table it will be perceived that Astoria, on the Pacific coast, and Fort Ripley in the interior, are in about the same latitude. Astoria, though 650 miles north of Monterey, is only 3 degrees colder. Fort Ripley is fifteen degrees colder than St. Louis, although it is only about 500 miles further north.

San Francisco, St. Louis, and Fort Monroe, are in about the same latitude. The difference between the mean summer and winter temperature of San Francisco is less than seven degrees; of St. Louis, nearly forty-four degrees; and of Fort Monroe, thirty-six degrees. Eastport is two degrees south of Astoria, but is nine degrees colder.

The United States may be divided with reference to the fall of rain into three regions, namely: the region of periodical rains, the region of frequent rains, and the region of scanty rains.

The region of periodical rains comprises the western division of the Pacific slope.

In that portion of this division south of the 40th parallel of latitude, scarcely any rain falls in summer, and very little in autumn. The quantity in winter somewhat exceeds that which falls during the spring.

A much greater quantity of rain falls upon that part of the division north of lat. $40^{\circ}$ than south of it; but, as in the southern division, the largest amount belongs to the winter and spring.

The region of frequent rains extends from the Atlantic coast westward to about the 100 th meridian of longitude. This region, considered as a whole, is exceedingly well watered, the rain being quite equally distributed through the different seasons.

From an examination of the table, it will appear that along the Atlantic slope, as far south as Washington, very nearly the same annual quantity of rain falls; and that it is very equally distributed throughout the year. In the Gulf States, and along the Atlantic slope south of Washington, the annual amount of rain is much greater than in the other sections, and the summer rains are much more abundant than those of the winter. In the interior the
annual quantity is less, and generally much less rain falls in winter than in the other seasons.

The region of scanty rains embraces the country between about the 100th meridian of longitude and the Cascade and Sierra Nevada Mountains. It includes the northern and southern divisions of the Pacific slope, the inland basin of Utah, the table-lands of the Texas slope, and the sterile region east of the Rocky Mountains.

Among the mountains of this region a considerable quantity of rain falls, and violent showers are experienced in all seasons of the year. Some of the mountain valleys are also well watered. Thus the annual fall of rain at Santa Fe , situated on a plateau enclosed by mountains, is 19.83 inches; and the fall at Fort Massachusetts, which is situated in a valley 100 miles further north, is $20.54 \cdot$ inches.

The annual fall of rain in the desert region, through which the great Colorado flows, is estimated at three inches; that of the inland basin of Utah, at five inches; of the Great Plain south of the Columbia River, ten inches; of the Llano Estacado, ten inches; and of the sterile region east of the Rocky Mountains, from fifteen to twenty inches. In all these sections scarcely any rain falls in summer.

The greatest amount of rain reported in the "Army Meteorological Register," for any given year, was the fall, in 1846, at Baton Ronge, of 116.6 inches; the least, a fall, in 1853, at Fort Yuma, California, of 1.78 inches.
[This valuable Table is compiled from the "Army Meteorological Register," and presents the results of all the records, in the Army Medical Bureau, for 33 years, from 1822 to the close of 1854.]
Table, shrwing the latitude and longitude, the eievation above the levet of the sea, the mean annual temperature, and the average annual fall of rain at various places in the United States.

| Name of Plage of Onservation |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | $47015{ }^{\prime}$ | $68035^{\prime}$ | 575 | $370 \cdot 04$ | 36.46 |
| Fort Fairfie'd, Main | 4646 | 6749 | 415 | $38 \cdot 11$ |  |
| Hancock Barracks, M | 4607 | 6749 | 620 | $40 \cdot 51$ | 36.97 |
| Fort Sullivan. Eastport, M | 4454 | 6658 | 70 | $43 \cdot 02$ | $39 \cdot 39$ |
| Fort Preble, Portiand, Maine | 4339 | 7020 | 20 | $45 \cdot 22$ | $45 \cdot 25$ |
| Fort Constitution, Portsmouth, N.H | 4304 | 7049 | 40 | $45 \cdot 81$ | 35-57 |
| Fort Independence, Bost. Har ,Mass | 4220 | 71 | 50 | $48 \cdot 92$ | $35 \cdot 30$ |
| Watertown Arsenal, Mass. ......... | 4121 | 7109 |  | 47-34 | $42 \cdot 07$ |
| Fort Adams, Rbode Island | 4129 | 7120 | 40 | 49-70 | $52 \cdot 46$ |
| Fort Wolcott, Newport Harbor, R. I. | 4130 | 7120 | 20 | $50 \cdot 72$ |  |
| Fort Trumbull, New London. Conn. | 4121 | $72^{\prime} 06$ | 23 | 49-62 | $45 \cdot 69$ |
| Fort Columbus, N. Y. Harb | 4042 | 7401 | 23 | 51.69 | $42 \cdot 23$ |
| Fort Hamilton, N. Y. Harb | 4037 | 7402 | 25 | 61.54 | $43 \cdot 65$ |
| West Point, New York | 4123 | 74 | 167 | 50.73 | $54 \cdot 15$ |
| Watervliet Arsenal, New Y | 4243 | 7343 | 50 ? | $48 \cdot 07$ | 34.55 |
| Plattsburg Barracks. New Y | 4441 | 7325 | 186 | 44. | $33 \cdot 39$ |
| Sackett's Harbor, New York | 4357 | 7615 | 262 | 46-38 | 39-78 |
| Fort Ontario, New York | 4320 | 7640 | 250 | $46 \cdot 44$ | 30.88 |
| Fort Niagara, New York | 4318 | 7908 | 250 | 47.91 | 31-77 |
| Buffalo Barracks New Yor | 4253 | 7858 | 660 | 46.25 | $38 \cdot 80$ |
| Alleghany Arsenal. Pittsburg | 4032 | 8002 | 704 | 50.86 | 34.96 |
| Carlisle Barracks Carlisle, Pa | 4012 | 7714 | 500 | 51.10 | 34.01 |
| Fort Mifflin, Pa. | 3953 | 7513 | 20 | 53.85 | $45 \cdot 27$ |
| Fort Delaware, D | 3935 | $75 \quad 34$ | 10 | $56 \cdot 06$ |  |
| Fort McHenry, M | 3917 | 7135 | 36 | $54 \cdot 36$ | 42. |
| Fort Severn, Md | 3858 | 7627 | 20 | $55 \cdot 42$ | $48 \cdot 61$ |
| Washington City, | 3853 | 7702 | 50-90 | $56 \cdot 14$ | 41.20 |
| Fort Washington. Md | 3843 | 7706 | 60 | $57 \cdot 87$ | $45 \cdot 02$ |
| Bellona Arsenal, Richm | 3720 | 7725 | 120 | $59 \cdot 27$ |  |
| Fort Monre Va. | 37 | 7618 |  | 58.89 | 50.89 |
| Fort Macon, N C | 3441 | 7640 | 20 | $62 \cdot 23$ |  |
| Fort Johnston. N | 34 | 7805 | 20 | $65 \cdot 68$ | 46.01 |
| Augusta Arsenal Ga | 3328 | 8153 | 600? | $64 \cdot 01$ |  |
| Fort Moultrie. Charleston, S | 3245 | 7951 | 25 | $66 \cdot 58$ | 44.92 |
| Oglethorpe Barracks Ga. | 3205 | 8107 | 40 | $67 \cdot 44$ | $53 \cdot 33$ |
| Fort Marion, St Augustine, | 2938 | 8135 | 25 | 69.61 | 31.80 |
| Fort Sbannon. Pi'atka, Eas | 2934 | 8148 | 25 | $69 \cdot 64$ | $48 \cdot 68$ |
| New Smyrna, East Fla. | 2854 | 8102 | 20 | 69. |  |

## Table continued.

| Name of Plage of Observation | $\begin{aligned} & \text { 总 } \\ & \text { 畨 } \end{aligned}$ |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Fort Pierce, East Fla, | $27^{\circ} 30^{\prime}$ | $80^{\circ} 20^{\prime}$ | 30 |  | 62.98 |
| Fort Dallas, East Fla. | 2555 | 8020 | 20 | $74 \cdot 75$ |  |
| Key West, Fla | 2432 | 8148 | 10 | $76 \cdot 51$ | $47 \cdot 65$ |
| Fort Myers, South Fila | 2638 | 8202 | 50 | 75-04. | $62 \cdot 26$ |
| Fort Brooke, Tampa Ba | 28 | 8228 | 20 | 71.92 | 55.47 |
| Fort Meade, Fla. | 2801 |  | 80 | $71 \cdot 48$ | $40 \cdot 22$ |
| Fort Micanopy, | 2930 | 8228 | 60 ? | $70 \cdot 09$ |  |
| Fort King, Fla | 2910 | 8210 | 50 | 70. |  |
| Cedar Keys, ${ }^{\text {E }}$ | 2907 | 8303 | 35 | 69•60 | 4850 |
| Fort Fanning, F | 2935 |  | 50 | $70 \cdot 20$ |  |
| Fort Barrancas, Pen | 3018 | 8727 | 20 | $68 \cdot 74$ | 56.98 |
| Fort Morgan, Ala | 3014 | 88 | 20 | 66.88 |  |
| Mt. Vernon Arsenal | 3112 | 8802 | 200? | $65 \cdot 84$ | 63.56 |
| Fort Pike, La. | 3010 | 8938 | 10 | 69.86 | 71.92 |
| Fort Wood, L | 3008 | 8951 | 20 | 69.25 | $60 \cdot 65$ |
| New Orlenns, | 2957 |  | 10 | $69 \cdot 86$ | 5090 |
| Baton Rouge, I | 3026 | 9178 | 41 | $68 \cdot 14$ | $62 \cdot 10$ |
| Fort Jessup, La | 3133 | 9332 | 80 | $66 \cdot 34$ | 45.85 |
| Fort Towson, I | 34 | 9533 | 300 ? | $61 \cdot 69$ | 51.08 |
| Fort Washita, | 2414 | 9638 | 645 | $62 \cdot 21$ | $41 \cdot 66$ |
| Fort Smith, Arkans | $35 \quad 23$ | 9429 | 460 | $60 \cdot 02$ | 4210 |
| Fort Gibson, Ind. Ter | 3447 | 9510 | 560 | 60.81 | $36 \cdot 46$ |
| Fort Scott, Mo. | 3745 | 9435 | 1000 ? | $54 \cdot 50$ | 42-12 |
| Jefferson Barracks. Mo | 3828 | 9015 | 472 | $55 \cdot 46$ | 37.83 |
| St. Louis Arsenal, Mo. | 3840 | 9005 | 450 | $54 \cdot 51$ | 41.95 |
| Newport Earracks, Newpor | 3905 | 8429 | 500 | $55 \cdot 26$ |  |
| Detroit, Mich. | 4220 | 8258 | 580 | $47 \cdot 25$ | 30.07 |
| Fort Gratiot, Mich | 4255 | 8223 | 598 | $46 \cdot 29$ | $32 \cdot 62$ |
| Fort Mackinac, Mich.. | 4551 | 8432 | 728 | $40 \cdot 65$ | $23 \cdot 87$ |
| Fort Dearborn. Chicago, | 4152 | 8735 | 591 | $46 \cdot 75$ |  |
| Fort Brady, Mich | 4630 | 8443 | 600 | $40 \cdot 37$ | $31 \cdot 35$ |
| Fort Wilkins, Mi | 4730 |  | 620 | 41. |  |
| Fort Howard, Wis. | 4430 | 8805 | 620 | $44 \cdot 49$ | $34 \cdot 65$ |
| Fort Winnebago. W | 4331 | 8928 | 770 ? | 44.80 | $27 \cdot 49$ |
| Fort Crawford, Wis. | 4305 |  | 642 | $47 \cdot 63$ | $81 \cdot 40$ |
| Fort Armstrong, 111.... | 4130 | 9040 | 528 | $50 \cdot 31$ |  |
| Fort Atkinson. Iowa | 43 |  | 700 ? | $45 \cdot 50$ | 39•74 |
| Fort Des Moines, Iowa | 4132 | 9338 | 780 | $49 \cdot 74$ | $26 \cdot 56$ |
| Fort Ripley. Minneso | 4619 | 9419 | 1130 | 39•30 | $29 \cdot 48$ |
| Fort Snelling. Minn. | 4453 | 9310 | 820 | 44.54 | $25 \cdot 43$ |
| Fort Leavenworth, Kansas | 3921 | 9444 | 896 | 52.78 | 30-29 |
| Council Bluffs, Nebraska | 4130 | 9548 | 1250 | 49-28 |  |
| Fort Kearney, Nebrask | 4038 | 9857 | 2360 | 47.67 | 27.98 |
| Fort Laramie. Nebraska | 4212 | 10447 | 4519 | 50.06 | $19 \cdot 98$ |
| Fort Arbuckle Ind | 3427 | 9709 | $1000 ?$ | $60 \cdot 83$ | $30 \cdot 57$ |
| Fort Belknap, Texas. | 3308 | 9848 | 1600? | 63 | 22 |

## 42 average temperature and fall of rain.

## Table continued.

| Nami oz Place of Observation. | 䓫 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Fort Worth, T | $32 \bigcirc 40^{\prime}$ | $97{ }^{\circ} 25^{\prime}$ | 1100 ? | 63054 | 40.86 |
| Phantom Hill, Texas | 3230 | 9945 | 2300 ? | 63'73 | 17. 22 |
| Fort Chadbourne, Te | 3138 | 10040 | 2120 | 62-38 | $31 \cdot 88$ |
| Fort Graham. Texas. | 3156 | 9726 | 900 ? | 65 76 | $40 \cdot 68$ |
| Fort Gates, Texas. | 3126 | 9749 | 1000 ? | 66.12 |  |
| Fort Crogban, Tex | 3040 | 9831 | 1000 ? | $65 \cdot 74$ | 56 |
| San Antonio. Texas | 2925 | 9825 | 600 | 69•25 | $33 \cdot 77$ |
| Fort Merrill, Texas | 2817 | 98 | 150? | 71-37 |  |
| Fort Ewell, Texas | 2805 | 9857 | 200 | 71-30 |  |
| Corpus Christi. Tex | 2747 | 9727 | 20 | $70 \cdot 95$ | 82 |
| Fort Brown, Texas | 2554 | 9726 | 50 | $73 \cdot 75$ | 33.65 |
| Ringgold Barracks, T | 2623 | 9902 | 200 ? | $74 \cdot 21$ | 20.95 |
| Fort McIntosh, Texas | 2731 | 9921 | 400 | $73 \cdot 24$ | $18 \cdot 66$ |
| Fort Duncan, Eagle Pass, | 2842 | 10030 | 800 | $70 \cdot 85$ | 22.20 |
| Fort Inge, Texas. | 2909 | 9907 | 845 | $67 \cdot 69$ | 27.99 |
| Fort Lincoln. Tex | 29 22 | 9933 | 900 ? | 68.03 | 20.58 |
| Fort Clark, Texas | 2917 | 10025 | 1000 ? | 61.04 | 21.80 |
| Fort Fillmore, New Mexi | 3213 | 10642 | 3937 | $63 \cdot 98$ | 9-28 |
| Fort Webster, New Mexico | 3248 | 10804 | 6350 | 54.84 | $8 \cdot 79$ |
| Fort Conrad, New Mexic | 3334 | 10709 | 4576 | $59 \cdot 40$ | $6 \cdot 76$ |
| Albuquerque, New Mexic | 3506 | 10638 | 5032 | $56 \cdot 32$ | $9 \cdot 42$ |
| Cebolleta and Laguna, New Mex | 3503 | 10714 | 6000 | $55 \cdot 12$ | 12.05 |
| Santa Fe, New Mexico | 3541 | 10602 | 6846 | 50.59 | 19.83 |
| Las Vegas, New Mexico | 3535 | 10516 | 6418 | $49 \cdot 14$ | $19 \cdot 24$ |
| Fort Union, New Mexic | 3554 | 10457 | 6670 | $49 \cdot 14$ | 19.24 |
| Fort Massachusetts, New | 3732 | 10523 | 8365 | $49 \cdot 11$ | $20 \cdot 54$ |
| Fort Defiance. New Mexi | 3544 | 10915 | 7200 ? | $46 \cdot 92$ | 16.64 |
| Fort Yuma, California | 3243 | 11436 | 120 | $73 \cdot 62$ | 3.24 |
| San Diego, California. | 3242 | 11714 | 150 | 62. | $10 \cdot 43$ |
| Posts Del Chino and Jurupa, Cal'a. | 34 | 11725 | 1000? | $63 \cdot 28$ | 13-77 |
| Monterey. California. | 3636 | 12152 | 140 | $55 \cdot 29$ | $12 \cdot 20$ |
| Fort Miller, California | 37 | 11940 | 402 | 66. | $24 \cdot 51$ |
| San Francisco. Califor | 3748 | 12226 | 150 | 54.88 | 23.59 |
| Benicia Barracks, Califo | 3803 | 12208 | 64 | 58.29 | 16.62 |
| Sacramento, California | 3833 | 12120 | 50 | 59.89 | $21 \cdot 32$ |
| Fort Reading, Californ | 4030 | 12205 | 674 | 62.09 | $29 \cdot 02$ |
| Fort Humboldt, Califo | 4046 | 12409 | 50 | $52 \cdot 80$ | $16 \cdot 77$ |
| Fort Jones. California | 4136 | 12252 | 2570 | $51 \cdot 40$ | 16.77 |
| Fort Orford, Californ | 4244 | 12429 | 50 | $53 \cdot 62$ | 68.52 |
| Fort Vancouver. Oreg | 4540 | 12230 | 50 | $52 \cdot 65$ | 45.50 |
| Fort Dalles, Oregon. | 4536 | 12055 | 350 | 52.79 | 14.32 |
| Fort Steilacoom, Washin | 4710 | 12225 | 300 ? | 50.82 | 5175 |
| Astoria. Oregon | 4011 | 12348 | 60 | 5223 |  |
| Great Salt Lake, U | 4046 | 11206 | 4351 | $53 \cdot 24$ |  |

## MEASUREMENT OF LAND.



Every farmer should know the contents, in acres, of each of his fields, meadows, and lots, to ascertain which he should have a rod measure, a light stiff pole, just $16 \frac{1}{2}$ feet long, with division marks on it of a yard each, making $5 \frac{1}{3}$ yards. Provided with this measure, and proceeding according to the following rules, he can ascertain the area in acres of each of his fields, lots, \&c.

Where the field is a square, a parallelogram, a rhombus, or a rhemboid.


Equare.


Parallelogram.


Rhombus.


Rhomboid.

Rule.-Multiply the length in rods by the breadth in rods, and divide the product by 160 , and the quotient will be the number of acres.

Example.-What is the area in acres of a field of 30 rods long by 28 rods wide.

Solution. $-30 \times 28=840 \div 160=5$ acres and 40 rods, or $5 \frac{1}{4}$ acres. Ans.

Where the field is triangular.


Rule.-Multiply the base or longest side, in rods, by the perpendicular height (i.e., the greatest width), in rods, and divide half the product by 160 , and the quotient will be the number of acres.

Example.- What is the area in acres of a triangular field, the base of which is 60 rods long, and its perpendicular height 28 rods?

Solution.- $60 \times 28=1680 \div 2=840 \div 160=5$ acres and 40 rods, or $5 \frac{1}{4}$ acres. Ans.

## When the field is a trapezium or a trapezoid.



Trapezium.


Trapezoid.

Rule.-Divide it diagonally by a line running from one extreme corner to the other, which will cut the field into two triangles; then proceed with each as in the foregoing rule, and add the areas of the two triangles together. The product will be the number of acres.

Where the field is an irregular polygon.


Role.-Draw diagonals to divide the field into triangles; find the area of each separately, and the sum of the whole will be the number of acres.

Note.-There are very few felds or lots which cannot be measured by cutting them into triangles, and proceeding by the above rule. In fact, all straight-sided fields can be so measured.

Where the field is long, and the sides crooked and irregular.


Rute.-Take the breadth in rods in a number of places, at equal distances apart; add them, and divide the sum by the number of breadths for the mean average or breadth; then multiply that by the length in rods and divide the product by 160 , and the quotient will be the number of acres.

Example.-What is the area in acres of a long irregularsided field, the length of which is 80 rods, and its breadths at 10 rods apart are as follows, viz. : $8,10,11,9,8,7,9$, 10 rods?

Solution. $-8+10+11+9+8+7+9+10=72 \div 8=9$ rods mean breadth; then $9 \times 80=720 \div 160=4$ acres and 80 rods, or $4 \frac{1}{2}$ acres. Ans.

Where the field is long, and the sides and ends crooked and irregular.


Ruce.-Find the mean breadth in rods by the foregoing rule, and proceed in like manner to find the meap length in rods; then multiply the mean length by the mean breadth, and divide the product by 160 , and the quotient will be the number of acres.

Example.-What is the area in acres of a field of irregular sides and ends, the various breadths of which are as follows, viz. : $9,6,7,8,10$ and 8 rods, and the lengths as follows, viz. : $50,40,30$ and 40 rods?

Solution. $-9+6+7+8+10+8=48 \div 6=8$ rods mean breadth.
$50+40+30+40=160 \div 4=40$ rods mean length.
Then $40 \times 8=320 \div 160=2$ acres. Ans.
Where the field is a circle.
Role.-Take the diameter in rods, and find the area of the circle in the table of circles on page 298, and divide it by 160 , and the quotient will be the number of acres.

Example.-What is the area in acres of a circular field 22 rods in diameter?

Solution.-380, area of circle, $\div 160=2$ acres and 80 rods, or $2 \frac{1}{3}$ acres. Ans.

An aore of land is contained in a plot,

| 3 by 531 ${ }^{\frac{8}{8} \text { rods }}$ | 7 by $222 \frac{8}{7}$ rods | 10 by 16 rods |
| :---: | :---: | :---: |
| 4 by 40 " | 8 by 20 " | 11 by $14 \frac{6}{17}$ |
| 5 by 32 | 9 by 17\% | 12 by $13 \frac{1}{3}$ |
| 6 by $26 \frac{2}{3}$ |  |  |

12 rods 10 feet and $8 \frac{1}{2}$ inches square make an acre.

It is often desirable, for experimental and other purposes, for a farmer to lay off small portions of his ground. To enable him to do so, we have compiled the following: Table, showing the square feet and the feet square of the fractions of an acre.

| Fractions of <br> an acre. | Square feet. | Feet square. | Fractions of <br> an acre. | Square feet. | Feet square. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\frac{1}{16}$ | $2722 \frac{1}{2}$ | $52 \frac{1}{2}$ | $\frac{1}{2}$ | 21780 | $147 \frac{1}{2}$ |
| $\frac{1}{8}$ | 5445 | $73 \frac{3}{2}$ | 1 | 43560 | $208 \frac{1}{4}$ |
| $\frac{1}{4}$ | 10890 | $104 \frac{1}{2}$ | 2 | 87120 | $295 \frac{1}{4}$ |
| $\frac{1}{8}$ | 14520 | $120 \frac{1}{2}$ |  |  |  |

Table, showing the number of hills or plants on an acre of land, for any distance apart, from 10 inches to 6 feet-the lateral and longitudinal distances being unequal.


Explanation.-Find the distance between your plants or hills the widest way in the left hand column, then trace the line in which it stands to the right, until it intersects the column headed by the number that expresses the distance of the narrow way, where you will find the number sought.

Example.-The rows of corn in a corn-field are $5 \frac{1}{2}$ feet apart, and the plants 20 inches apart, in drill or hill; required, the number of hills or plants in an acre?

Solution.-Find $5 \frac{1}{2}$ feet (the distance of the rows apart), in the left hand column, then trace the line along unto the column headed by 20 inches (the distance of the plants or hills apart), and you have 4752. Ans.

Table, showing the number of plants, hills, or trees con-
tained in an acre at equal distances apart, from 3 inches up to 66 feet.

| Dtstance apart. | No. of plants. | Distance epart. | No. of plents. |
| :---: | :---: | :---: | :---: |
| 3 inches by 3 inches | . 696,960 | 6 feet by 6 feet | ... 1,210 |
| 4 " by 4 ". | 392,040 | $6 \frac{1}{2} " \mathrm{by} 6 \frac{1}{2}{ }^{\prime}$ | 1,031 |
| 6.4 by 6 " | 174,240 | $7{ }^{\prime}{ }^{\text {" b }} 7{ }^{2}$ " | 881 |
| 9 " by 9 " | 77,440 | 8 " by 8 " | 680 |
| 1 foot by 1 foot. | . 43,560 | $9 "^{\prime} \mathrm{by} 9$ " | 537 |
| 11 $\frac{1}{2}$ feet by $1 \frac{1}{2}$ feet | - 19,360 | 10 " by 10 " | 435 |
| 2 " by 1 foot. | . 21,780 | 11 " by 11 " | 360 |
| 2 " by 2 feet. | 10,890 | 12 " by 12 " | 302 |
| $2 \frac{1}{2}$ " by 2 $\frac{1}{2}$ " | - 6,960 | 13 " by 13 " | 257 |
| $3{ }^{3}$ " by 1 foot | - 14,520 | 14 " by 14 " | 222 |
| 3 " by 2 feet | 7,260 | 15 " by 15 " | 193 |
| 3 " by 3 " | 4,840 | 16 " by 16 " | 170 |
| $3 \frac{1}{2}$ " by 31 ${ }^{\text {a }}$ | 3,555 | $16 \frac{1}{2}{ }^{\circ} \mathrm{Cb}$ by $16 \frac{1}{2}^{\prime \prime}$ | 160 |
| 4 " by 1 foot | 10,890 | $17^{2}$ " by $17 *$ | 160 |
| 4 " by 2 feet | 5,445 | 18 " by 18 ، | 134 |
| $4{ }^{4} \mathrm{byy} 3$ " | 3,639 | 19 " by 19 " | 120 |
| $4{ }^{4}$ " by 4 " | 2,722 | 20 " by 20 " | 108 |
| 4 $\frac{1}{2}$ " by $4 \frac{1}{2}{ }^{\prime \prime}$ | 2,151 | 25 " by 25: " | 69 |
| 5 " by 1 foot | 8,712 | 30 " by 30 " | 48 |
| 5 " by 2 feet | 4,356 | 33 " by 33 " | 40 |
| 5 " by 3 " | 2,904 | 40 " by 40 * | 27 |
| 5 " ${ }^{\prime \prime}$ by 4 " | 2,178 | 50 " by 50 " | 17 |
| 5 " by 5 " | 1,742 | 60 " by 60 " | 12 |
| $5 \frac{1}{2}{ }^{\text {a }}$ by $5 \frac{1}{2}$ ". | 1,417 | 66 " by 66 " | .............. 10 |

## GOVERNMENT LAND MEASURE.'

A township is. 6 miles square, and contains 36 sections, or 23,040 acres.

A section is 1 mile square, and contains 640 acres.
A quarter-section is half a mile square, and contains 160 acres.
A half quarter-section is half a mile long, almost universally north and south, and one-fourth of a mile wide, and contains 80 acres.
A quarter quarter-section is orie-fourth of a mile square, and contains 40 acres. It is the smallest sized tract, except fractions, sold by the government.


## MEASUREMENT OF HAY.



There is no accurate mode of measuring hay but by weighing it. This, on account of its bulk and character, is very difficult, unless it is baled or otherwise compacted. This difficulty has led farmers to estimate the weight by the bulk or cubic contents, a mode which, from the nature of the commodity, is only approximately correct. Some kinds of hay are light, while others are heavy, their equal bulks varying in weight. But for all ordinary farming purposes of estimating the amount of hay in meadows, mows, and stacks, the following rules will be found sufficient.

As nearly as can be ascertained, 25 cubic yards of average meadow hay, in windrows, make a ton.

When well settled in mows or stacks, 15 or 18 cubic yards make a ton.

When taken out of mows or old stacks, and loaded on wagons, 20 or 25 cubic yards make a ton.

Twenty or twenty-five cubic yards of clover, when dry, make a ton.

To find the number of tons of meadow hay raked into windrows.

Rude.-Multiply the length of the windrow in yards by the width in yards, and that product by the height in yards, and divide by 25 ; the quotient will be the number of tons in the windrow.

Example.-How many tons of hay in a windrow 40 yards long by 2 wide and 2 high ?

Solution. $-40 \times 2 \times 2=160 \div 25=6 \frac{2}{5}$. Ans.
To find the number of tons of hay in a mow.
Roce.-Multiply the length in yards by the height in yards, and that by the width in yards, and divide the product by 15 ; the quotient will be the number of tons.

Example.-How many tons of well-settled hay in a mow 10 yards long by 6 wide and 8 high ?

Solution.- $10 \times 6 \times 8=480 \div 15=32$ tons. Ans.

To find the number of tons of hay in old stacks.


Rule.-Find the area in square yards of the base in the table of the areas of circles on page 298, or by the rule given on page 296 ; then multiply the area of the base by half the altitude of the stack in yards, and divide the product by 15 ; the quotient will be the number of tons.
Example.-How many tons of hay in a circular stack, whose diameter at the base is 8 yards, and height 9 yards?

Solution. -50.265 , area of base in sq. yards, $\times 4 \frac{1}{2}$, half the altitude, $=226.192 \div 15=15.079$ tons. Ans. .

To find the number of tons in long square stacks.
Role.-Multiply the length in yards by the width in yards, and that by half the altitude in yards, and divide the product by 15 ; the quotient will be the number of tons.

Example.-How many tons of hay in a square stack 10 yards long, 5 wide, and 9 ligh ?

SoLUTION. $-10 \times 5 \times 4 \frac{1}{2}=225 \div 15=15$ tons. Ans.

To find the number of tons of hay when taken out of mows or old stacks．

Ruce．－Multiply the length of the load in yards by the width in yards，and that by the height in yards，and divide the prodnct by 20 ；the quotient will be the number of tons．

Example．－How many tons of hay taken from an old stack，in a load 6 yards long by 3 wide and 3 high ？

Sonittion．$-6 \times 3 \times 3=54 \div 20=2 \frac{7}{10}$ tuns．Ans．
＇These estimates are for medium sized mows or stacks． If the hay is piled to a great height，as it often is where horse hay－forks are used，the row will be much heavier per cubic yard．

Table，showing the price per owt．of hay，at given prices per ton．

|  |  | $\begin{aligned} & \text { 跑 } \\ & \text { 易 } \\ & \sim \end{aligned}$ |  |  | $\begin{aligned} & \text { 总 } \\ & \text { 易 } \\ & \text { + } \end{aligned}$ |  |  |  |  |  |  | $\begin{aligned} & \text { rod } \\ & \stackrel{y}{t} \\ & \text { and } \\ & \text { F } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \＄ | chs． | cts | \＄cts | \＄cts | \＄cts | \＄cts | \＄cts | \＄cts | \＄ets | \＄cts |  |  |
| 4 | 10. | 20 | 40 | 60 | 80 | 1.00 | 1.20 | 1.40 | 1.60 | 1.80 | 2.00 | 2.20 |
| 5 | 12 | 25 | 50 | 75 | 1.00 | 1.25 | 1.50 | 1.75 | 2.00 | 2.25 | 2.50 | 2.75 |
| ${ }_{6}$ | 1.5 | 30 | 60 | 90 | 1.20 | 1.50 | 1.80 | 2.10 | 2.40 | 2.70 | 3.00 | 3.30 |
|  | 17 | 35 | 70 | 1.05 | 1.40 | 1.75 | 2.10 | 2.45 | 2.80 | 3.15 | 3.50 | 3.85 |
| 8 | 20 | 40 | 80 | 1.20 | 1.60 | 2.00 | 2.40 | 2.80 | 3.20 | 3.60 | 4.00 | 4.40 |
| 9 | 22 | 45 | 90 | 1.35 | 1.80 | 2.25 | 2.70 | 3.15 | 3.60 | 4.05 | 4.50 | 4.95 |
| 111 | 25 | 50 | 1.00 | 1.50 | 2.00 | 2.50 | 3.00 | 3.50 | 4.00 | 4.50 | 5.00 | 5.50 |
| 11 | 27 | 55 | 1.10 | 1.65 | 2.20 | 2.75 | 3.30 | 3.85 | 4.40 | 4.95 | 5.50 | 6.00 |
| 12 | 30 | 60 | 1.20 | 1.80 | 2.40 | 3.00 | 3.60 | 4.20 | 4.80 | 5.40 | 6.00 | 6：60． |
| 13 | 32 | 65 | 130 | 1.95 | 2.60 | 3.25 | 8.90 | 4.55 | 5.20 | 5.85 | 6.50 | 7.15 |
| 14 | $3{ }^{3}$ | 70 | 1.40 | 2.10 | 2.80 | 3.50 | 4.20 | 4.90 | 5.60 | 6.30 | 7.00 | 7.70 |
| 15 | 37 | 75 | 1.50 | 2.25 | 3.00 | 3.75 | 4.50 | 5． 25 | 6.00 | 6.75 | 7.50 | 8.25 |

## Table continued.

|  |  |  |  |  |  | $\begin{aligned} & \text { '80 } \\ & \text { 苞 } \\ & \text { gen } \\ & \text { F } \end{aligned}$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \$ | \$ cts |
| 4 | 2.40 | 2.60 | 2.80 | 3.00 | 3.20 | 8.40 | 3.60 | 3.80 | 4.00 |
| 5 | \%. 00 | 3.25 | 3.50 | 3.75 | 4.00 | 4.25 | 4.50 | 4.75 | 5.00 |
| 6 | 3.60 | 390 | 4.20 | 4.50 | 4.80 | 6.10 | 5.40 | 5.70 | 6.00 |
| 7 | 4.20 | 4.55 | 4.90 | 5.25 | 5.60 | 5.95 | 6.30 | 6.65 | 7.00 |
| 8 | 4.80 | 5.20 | 5.60 | 6.00 | 6.40 | 6.80 | 7.20 | 7.60 | 8.00 |
| 9 | 5.40 | 5.85 | 6.30 | 6.75 | 7.20 | 7.65 | 8.10 | 8.55 | 9.00 |
| 10 | 6.00 | 6.50 | 7.00 | 7.50 | 8.00 | 8.50 | 9.00 | 9.50 | 10.00 |
| 11 | 6.50 | 7.15 | 7.70 | 8.25 | 8.80 | 9.35 | 9.90 | 10.45 | 11.00 |
| 12 | 7.20 | 7.80 | 8.40 | 9.00 | 9.60 | 10.20 | 10.80 | 11.40 | 12.00 |
| 13 | 7.80 | 8.45 | 9.10 | 9.75 | 10.40 | 11.05 | 11.70 | 12.35 | 13.00 |
| 14 | 8.40 | 9.10 | 9.80 | 10.50 | 11.20 | 11.90 | 12.60 | 13.30 | 14.00 |
| 15 | 9.00 | 9.75 | 10.50 | 11.25 | 12.00 | 12.75 | 13.50 | 14.25 | 15.00 |

An easy mode of ascertaining the value of a given number of lbs. of hay, at a given price per ton of 2000 lbs .

Rule.-Multiply the number of pounds of hay (coal, or anything else which is bought and sold by the ton) by one half the price per ton, pointing off three figures from the right hand; the remaining figures will be the price of the hay (or any article by the ton).

Example.-What will be the cost of 658 lbs . of hay, at $\$ 7.50$ per ton?

Solution.- $\$ 7.50$ divided by 2 equals $\$ 3.75$, by which multiply the number of pounds, thus:

658
$\$ 3.75$
3290
4606
1974
\$2.46\|750. Ans.

Note.-The principle in this rule is the same as in interest--dividing the price by two gives us the price of half a ton, or 1000 lbs . ; and pointing off three figures to the right is dividing by 1000 .

A truss of hay, new, is 60 lbs. ; old, 56 lbs. ; straw, 40 lbs.
A load of hay is 36 trusses.
A bale of hay is 300 lbs .

## TO MEASURE CORN ON THE COB IN CRIBS.



When the crib is equilateral.
Rete.-Multiply the length in inches by the breadth in inches, and that again by the height in inches, and divide the product by 2748 (the number of cubic inches in a heaped bushel), and the quotient will be the number of heaped bushels of ears. Take two-thirds of the quotient for the number of bushels of shelled corn.

Example.-Required the number of bushels of shelled corn contained in a crib of ears, 15 feet long by 5 feet wide and 10 feet high ?

Solution. -180 in., length, $\times 60$ in., width, $\times 120 \mathrm{in}$,
height, $=1296000 \div 2748=471.6$ heaped bushels, 2 of which is 314.6 bushels shelled. Ans.

Note.-The above rule assumes that three heaping half bushels of ears make one struck bushel of shelled corn. This proportion has been adopted upon the authority of the major part of our best agricultural journals. Nevertheless, some journals claim that two heaping bushels of ears to one of shelled corn is a more correct proportion, and it is the custom in many parts of the country to buy and sell at that rate. Of course, much will depend upon the kind of corn, the shape of the ear, the size of the cob, \&c. Some samples are to be found, three heaping half bushels of which will even overrun one bushel shelled; while others again are to be found, two bushels of which will fall short of one bushel shelled. Every farmer must judge for himself, from the sample on hand, whether to allow one and a half or two bnshels ears to one of shelled corn. In either case, it is only an approximate measurement, but sufficient for all ordinary purposes of estimation. The only true way of measuring all such products is by weight.

When the crib is flared at the sides.
Rule.-Multiply half the sum of the top and bottom widths in inches by the perpendicular height in inches, and that again by the length in inches, and divide the product by 2748 , and the quotient will be the number of heaped bushels of ears. Take two-thirds of the quotient for the number of bushels of shelled corn.

Example.-Required, the number of bushels of shelled corn contained in a crib of ears 4 feet wide at the bottom, 8 feet at the top, 10 feet in perpendicular height, and 15 feet long?

Solotion. -48 inches, bottom width, +96 inches, top width, $=144 \div 2=72 \times 120$ inches perpendicular height, $\times$ 180 inches length,$=1555200 \div 2748=565.9$ bus. ears, $\frac{2}{3}$ of which is 377.28 bus. shelled corn. Ans.

Note.-A barrel of corn is 5 bushels shelled. By this latter measure crops are estimated, and corn bought and sold throughout most of the Southern and Western States. At New Orleans a barrel of corn is a flour-barrel full of ears. In some parts of the West, it is common to count 100 ears to the bushel.


## MEASDREMENT OF GRAIN IN GRANARIES.



To find the number of bushels of grain in a granary.
Ruce.-Multiply the length in inches by the breadth in inches, and that again by the depth in inches, and divide the product by 2150 (the number of cubic inches in a bushel), and for heaped bushels by 2748 , and the quotient will be the answer.

Example.-Given a granary 9 feet long by 4 wide and 6 deep. How many bushels will it contain?

Solution. -108 inches length, $\times 48$ inches width, $\times 72$ in. depth, $=373248 \div 2150=173.65$ bus. Ans.

MEASUREMENT OF TIMBER.


The unit of board measure is a superficial foot 1 inch thick.
Besides inch-boards, plank and scantling are usually bought and sold by board measure.

Round, sawed, or hewn timber is bought and sold by the cubic foot.

Pine and spruce spars, from 10 to $4 \frac{1}{2}$ inches in diameter inclusive, are measured by taking the diameter, clear of 'bark, at one-third of their length from the large end.

Spars are usually purchased by the inch diameter; all under 4 inches are considered poles.

Spruce spars of 7 inches and less, should have 5 feet in length for every inch in diameter.

## WOOD MEASURE.

To ascertain the contents or number of cords in a given pile of wood.

Role.-Multiply the length by the width, and that product by the height, which will give you the number of cubic feet. Divide that product by 128 , and the quotient will be the number of cords.

A pile of wood 4 feet wide, and 4 feet high, and 8 feet long, contains 1 cord; and a cord foot is 1 foot in length of such a pile, thus :


## BOARD MEASURE.

To ascertain the contents (board measure) of boards, scantling, and plank.

Rule.-Multiply the breadth in inches by the thickness in inches, and that by the length in feet, and divide the product by 12 , and the quotient will be the contents.




 ㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇ
 PABLE，示に中
 N





 8







ㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇ

"~









 －

Explanatron.-First find the width in inches in the left hand column, and the length in feet at the heads of the other columns; then trace the two until they meet, and the figures so found will express the contents in feet and inches.

## ROUND TIMBER.



Round timber when squared is estimated to lose onefifth; hence a ton of round timber is said to contain only 40 cubic feet.

Sawed lumber, as joists, plank, and scantlings, are now generally bought and sold by board measure. The dimensions of a foot of board measure is 1 foot long, 1 ft . wide, and 1 inch thick.

- To measure round timber.

Rule.-Take the girth in inches at both the large and small ends, add them, and divide their sum by two for the mean girth; then multiply the length in feet by the square of one-fourth of the mean girth in inches, divide the product by 144 , and the quotient will be the contents in cubic feet.

Example.-What are the cubic contents of a round log 12 feet long, 54 inches girth at the large end, and 34 at the small end?

Soldtion. $-54+34=88 \div 2=44$ inches, mean girth.
Then 12 length $\times 121$ inches (the square of $\frac{1}{4}$ mean girth) $=1452 \div 144=10_{\frac{1}{12}}$ cubic feet. Ans.

## SQUARE TIMBER.

To measure square timber.
Rule.-Multiply the breadth in inches by the depth in inches, and that by the length in feet, and divide the product by 144, and the quotient will be the contents in cubic feet.

Example.-What is the cubic contents of a square $\log$ 12 feet long by 20 inches broad and 18 deep?

Solution. $-20 \times 18=360 \times 12=4320 \div 144=30$ cubic feet. Ans.

## PLANK MEASURE．

## Table，showing the contents（board measure）of planks of various dimensions．

| ${ }_{6 L} \mathrm{Sq}_{\mathrm{z}}$ |  |
| :---: | :---: |
| 81 497 |  |
| LT 49 Z |  |
|  |  |
| 91497 | ర68\％ |
| FI 497 | ¢0\％¢ ¢ M M No |
| ¢1 ¢́ C | N－ |
|  |  |
| 23 ¢975 |  |
| $97^{\text {Sq }}$ 者 |  |
| 96 Sq部 |  |
| $\overline{7 \% S q G I}$ |  |
| 88 Sq考 I |  |
| 8749考I |  |
|  |  |
|  |  |
|  |  |
| 814q\＃I |  |
| LTSqGI |  |
|  | ¢ ¢¢ |
|  |  |
|  | F以 |
|  |  |
|  | 小ু |
|  |  |
| 01496ı |  |
|  |  |

## Table continued．

|  |  |
| :---: | :---: |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
| $\overline{6 z K q \frac{5}{2} Z}$ |  |
| 梌和 |  |
|  |  |
|  |  |
|  |  |
| LISqも |  |
| 9［去事を |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
| 96イq |  |
| ç SqZ |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
| ұәа． |  |

## Table continued.

|  |  |
| :---: | :---: |
|  |  |
| 10 A18 ¢ |  |
|  |  |
|  |  |
|  |  |
|  |  |
| \% K48\| ¢ ¢ |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
| 牦他\| |  |
|  |  |
|  |  |
|  |  |

## Tablé continued．

| 91イqb｜s |  |
| :---: | :---: |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  <br>  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  <br>  |  |
|  |  |
|  |  |
| $964 \varepsilon \mid$ 足家 |  |
|  <br>  |  |
|  |  |

Table continued.

|  | Feet long. |
| :---: | :---: |
|  | 4 by 17 |
|  | 4 by 18 |
|  | 4 hy 19 |
|  | 4 by 20 |
|  | y 21 |
|  | 4 hy 22 |
|  | 4 by 23 |
|  <br>  | 4 by 24 |
|  <br>  | 4 by 25 |
|  <br>  | 4 by 26 |

Explanation.-Find the length in feet in the left hand column, and the width and thickness in inches at the heads of the other columns, and trace the two until they meet, and the figures so found will express the contents in feet, board measure. For a less length than any provided in the table, take the $\frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \& c$., of the lengths given. Thus for 6 feet take $\frac{1}{4}$ of $24, \& c$.

## LOGS REDUCED TO INCH-BOARD MEASURE.

Table, showing the number of feet (board measure) of inch-boards contained in round saw logs of various
> dimensions

| $\begin{aligned} & \text { + } \\ & \text { E } \\ & \text { Hen } \\ & \text { H } \end{aligned}$ | $\begin{aligned} & \text { M1.1 } \\ & \text { d } \\ & \stackrel{\rightharpoonup}{\mathrm{A}} \end{aligned}$ |  |  | $\begin{aligned} & \text { 品 } \\ & \stackrel{y}{*} \end{aligned}$ | $\left\lvert\, \begin{gathered} \mathrm{H} \\ \text { d } \\ \stackrel{g}{B} \end{gathered}\right.$ |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 10 | 40 | 617 | 72 | 99 | 116 | 1：3\％ 150 | 175 | 19120 | 209235 | 235252 | 287 | 313 | 342 | 3381 |
| 11 | 54 | 677 | 79.98 | 09 | 12714 | 147165 | 192 | 205 | $230 \times 59$ | 59278 | 315 | 344 | $3{ }^{5}$ | $4!9$ |
| 12 | 59 | 738 | 86107 | 19 | 13916 | $160 \backslash 180$ | 210 | $228 \times 2$ | 251283 | 83 303 | 344 | 375 | 111 | 457 |
| 13 | 61 | 7993 | 93116 | 129 | 15，17 | 178195 | 2\％7 | 24727 | 272306 | 06 328 | 373 | 408 | 44： | 495 |
| 14 | 69 | 85100 | 00125 | 139 | 16： 18 | $18 i 3: 0$ | 245 | 26629 | 292336 | 336 | 401 | 4394 | 47 S | 33 |
| 1.3 | 74 | ${ }^{91} 107$ | 07134 | 149 | 17320 | 200） 225 | 262 | 28531 | 318353 | 353 | 430 | 4695 | 514 | 71 |
| 16 | 73 | 9711 | $1414{ }^{\text {i }}$ | 159 | 185 | 218.34 | 280 | 30433 | 334377 | 77404 | 450 | 二00 5 | 548 | 609 |
| 17 | 811 | 103122 | 22151 | 108 | 196 | 227235 | 297 | 32＊35 | 355401 | 401129 | 478 | 531 | 38. | 647 |
| 18 | 88 | 10912 | 29160 | 178 | 2082 | 24027 | 315 | 34.37 | 37 C 424 | 424454 | 51 C | E6？ 6 | G1r | 685 |
| 19 | 931 | 11613 | 36169 | 88 | 21925 | 253.285 | 33 | 36139 | 397447 | 4448 | 545 | 5946 | 651 | 2723 |
| 20 | 9.1 | 12214 | $4317 \times$ | 198 | 2322 | 267300 | 350 | 380.11 | 11847 | 470 | 573 | 6256 | 684 | 8761 |
| 21 | 1031 | 12815 | 50187 | 208 | 2432 | 280315 | 36 | 39： 4 | 439495 | 495.53 | 602 | 6567 | 71： | 480 |
| 22 | $10 \times 1$ | 134157 | 57 196 | 218 | 255 | 298330 | 385 | 41846 | 460 518 | 51855 | 631 | （is8 7 | $75:$ | 0838 |
| 23 | 113 | 14016 | 164205 | 328 | 266 | 307 34； | 403 | 3748 | 4801542 | 542.37 | 659 | 719 | 787 | 7876 |
| 21 | 118 | 14617 | 72214 | 38 | 278 | 320360 | 420 | $45 \cdot 50$ | 501568 | 568600 | 688 | 7518 | 821 | 14 |
| 25 | 1231 | 2179 | 79 223 | 248 |  | 333｜375 | 5438 | －2 | 522 589 | 589 631 | 717｜7 |  | 856 |  |
| $\begin{aligned} & \stackrel{+}{0} \\ & \text { E } \\ & \text { Hi } \end{aligned}$ |  |  |  |  | $\begin{aligned} & \text { H } \\ & \text { 品 } \\ & \text { 胃 } \end{aligned}$ | $\begin{aligned} & \text { M } \\ & \text { 品 } \\ & \text { 品 } \end{aligned}$ |  | $\begin{aligned} & \text { 角 } \\ & \text { 品 } \\ & \text { 品 } \end{aligned}$ |  | $\begin{aligned} & \text { gig } \\ & \text { 品 } \\ & \text { 品 } \end{aligned}$ | $\begin{aligned} & \text { प्ד } \\ & \text { g } \\ & \text { Ä } \end{aligned}$ | $\begin{aligned} & \text { ت才 } \\ & \text { 日 } \\ & \text { 品 } \end{aligned}$ |  |  |
| 10 | 411 | 444 | 460 | 490 | 500 | 547 | 577 | 644 | 4669 | 970 | 752 |  | 840 | 872 |
| 11 | 451 | 448 | 806 | 539 | 5.9 | 603 | 634 | 708 | 834 | 770 | 828 | 874 | 4924 | 959 |
| 12 | 493 | 532 | 253 | $5 \times 8$ | 600 | 065 | 692 | 772 | 2801 | 840 | 903 | 954 | 41007 | 1046 |
| 13 | 534 | 576 | 593 | 637 | 650 | 0712 | 750 | 836 | 6368 | 819 | 978 | 1033 | 31091 | 1135 |
| 14 | 57. | 622 | 241 | 686 | 70 ¢ | 766 | 807 | 901 | 1934 | 34.980 | 1053 | 1113 | 31175 | 1222 |
| 15 | 616 | 666 | 6690 | 735 | 750 | 0821 | 865 | 965 | 51001 | 11050 | 1129 | 1192 | 2 125！ | 1309 |
| 16 | 6.51 | 710 | 0735 | 784 | 800 | 0876 | 923 | 1029 | 91068 | 81120 | 1204 | 1272 | 21342 | 1396 |
| 17 | 608 | 7.5 | 582 | 833 | 850 | 0931 | 980 | 1094 | 4113. | ＋1190 | 1279 | $135]$ | ］ 1427 | 1485 |
| 18 | 739 | 799 | 828 | 882 | 900 | 0985 | 1038 | 1158 | 81201 | 11260 | 1354 | 1431 | 1511 | 1571 |
| 19 | 78 | 843 | 3871 | 931 | 950 | 01040 | 1096 | 1222 | 2 ［268 | 81330 | 1430 | 1511 | 11595 | 1658 |
| 20 | $8: 1$ | 888 | 8 9：0 | 980 | 1000 | 01095 | 1152 | 1287 | 1335 | 51400 | 1505 | 1590 | 0167 | 1745 |
| 21 | 863 | 932 | 2960 | 1029 | 1050 | 01150 | 1210 |  |  |  |  |  |  |  |
| 22 | 904 | 976 | 1012 | 11178 | 1100 | 01204 | 1268 |  |  |  |  |  |  |  |
| 23 | 94.5 | 1021 | 11058 | 1127 | 1150 | 1259 | 1323 |  |  |  |  |  |  |  |
| 24 | 986 | 1065 | 51104 | 1176 | 1200 | 01314 | 1380 |  |  |  |  |  |  |  |
| 25 | 1027 | 1109 | 91150 | 122 | 1250 | O 1369 | 1438 |  |  |  |  |  |  |  |

Explanation．－Find the length of the $\log$ in feet in the left laand column，and its mean diameter in inches（found by adding the two end diameters，and dividing their sum by two）at the heads of the other columns，and trace them
until theymeet, and the figures so found will express the number of feet board measmre of inch-boards the log will furnish.

SCANTLING MEASURE.
Table, showing the contents (board measure) of scantling of various dimensions.

|  |  |
| :---: | :---: |
|  <br>  | ¢゙ |
|  <br>  | 5 |
|  $\rightarrow \infty^{\circ}$ i $\infty^{\circ}$ is | 5 |
|  | 5 <br>  |
|  | 5 5 5 0 |
|  <br>  | $\stackrel{ \pm}{4}$ |
|  <br>  | $N$ <br> + |
|  <br>  | [ |
|  $i \infty^{\circ}$ i $\infty^{\circ}$ is $x$. |  |

Table continued．

|  <br>  |  |
| :---: | :---: |
|  <br>  <br>  | $\begin{gathered} t \\ H \end{gathered}$ |
|  <br>  | $\begin{gathered} \text { N } \\ \underset{4}{*} \\ \hline \end{gathered}$ |
|  <br>  | $\begin{aligned} & \text { E } \\ & 0 \\ & 0 \end{aligned}$ |
|  <br>  | $\underbrace{\infty}_{\rightarrow}$ |
|  i $\infty^{\circ}$ i $\infty^{\circ}$ it $\infty^{\circ}$ it $\infty^{\circ}$ i $\infty$ i $\infty$ i $\infty^{\circ}$ i $\infty^{\circ}$ iA $\infty$ iA $\infty$ | $\xrightarrow[+]{\infty}$ |
|  の山以 <br>  |  |
|  <br>  | 5 |
|  <br>  | N |
|  o o or $\sigma_{0}$ os $\rightarrow$ o o ${ }^{\circ}{ }^{\circ}$ o $\rightarrow$ o O 0 | $$ |
|  <br>  | $\omega$ $\stackrel{5}{4}$ $\omega$ |
|  | 0 $\left\lvert\, \begin{aligned} & \text { F } \\ & \text { A } \end{aligned}\right.$ |

## Table continued.

|  |  |
| :---: | :---: |
|  <br>  | ¢ |
|  | $\stackrel{\infty}{\square}$ |
|  <br>  | $\stackrel{\infty}{4}$ |
|  |  |
| Teq. <br>  | 0 <br> 4 <br> 0 <br> 0 |
|  <br>  | - |
|  <br>  | $\stackrel{5}{5}$ |
| - | - |
|  <br>  | $\stackrel{\rightharpoonup}{4}$ |
|  $\rightarrow \infty=\infty-\infty=\infty-\infty=\infty$ | $\begin{array}{r}\square \\ \stackrel{\rightharpoonup}{4} \\ 0 \\ 0 \\ \hline\end{array}$ |
|  | - |

## Table continued.

|  | $\begin{aligned} & \text { Hay } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$ |
| :---: | :---: |
|  <br>  | $\begin{aligned} & \stackrel{N}{4} \\ & \stackrel{4}{4} \end{aligned}$ |
|  i $\infty$ i $\infty^{\circ}$ is $\infty^{\circ}$ i $\infty^{\circ}$ i $\infty^{\circ}$ is $\infty^{\circ}$ i $\infty^{\circ}$ is $\infty^{\circ}$ iA $\infty^{\circ}$ if $\infty$ | $\begin{gathered} \text { 苟 } \\ \infty \end{gathered}$ |
|  | $\begin{aligned} & +\quad+ \\ & \hline \\ & 0 \end{aligned}$ |
|  <br>  | $$ |
|  <br>  | $\begin{aligned} & \mathbb{H} \\ & \underset{4}{+} \\ & \underset{\sim}{-} \end{aligned}$ |
|  | $\begin{aligned} & \text { N } \\ & \text { + } \\ & \text { N } \end{aligned}$ |
|  <br>  | $\begin{aligned} & \text { er } \\ & 5 \\ & \text { or } \end{aligned}$ |
|  <br> is a os a os | $\begin{aligned} & 0 \\ & 0 \\ & 4 \\ & 0 \end{aligned}$ |
|  <br>  | $\begin{aligned} & e r \\ & e_{4}^{5} \\ & \hline \end{aligned}$ |
|  <br>  |  |
|  <br>  | $\begin{aligned} & \text { Or } \\ & \text { O } \\ & 0 \end{aligned}$ |

## Table continued.



Table continued.

| lect Long. | 9 by 10 | 9 by 11 | 10 by 10 | 10 by 111 | 10 by 12 | 11 by 11 | 11 by 12 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 7.6 | 8.3 | 8.4 | 9.2 | 10. | 10.1 | 11. |
| 2 | 15 | 166 | 16.8 | 18.4 | 20. | 20.2 | 22. |
| 3 | 22.6 | 24.9 | 25. | 27.6 | 30. | 30.3 | 33. |
| 4 | 30. | 33. | 33.4 | 36.8 | 40. | 49.4 | 44. |
| 5 | 37.6 | 41.3 | 41.8 | 45.10 | 50. | 50.5 | 55. |
| 6 | 45. | 49.6 | 50. | 65. | 60. | 60.6 | 66. |
| 7 | 52.6 | 57.9 | 68.4 | 64.2 | 70. | 70.7 | 77. |
| 8 | 60. | 66. | 66.8 | 73.4 | 80. | 80.8 | 88. |
|  | 67.6 | 74.3 | 75. | 82.6 | 90. | 90.9 | 99. |
| 10 | 75. | 82.6 | 83.4 | 91.8 | 100. | 100.10 | 110. |
| 11 | 82.6 | 90.9 | 91.8 | 140.10 | 110. | 110.11 | 121. |
| 12 | 90. | 99. | 100. | 1:0. | 120. | 121. | 132. |
| 13 | 97.6 | 107.3 | 1188.4 | 119.2 | 130. | 131.1 | 143. |
| 14 | 10 s . | 115.6 | 116.8 | 128.4 | 140. | 141.2 | 154. |
| 15 | 112.6 | 123.9 | 125. | 137.6 | 150. | 151.3 | 165. |
| 16 | 120. | 132. | 133.4 | 146.8 | 160. | 161.4 | 17 G. |
| 17 | 127.6 | 140.3 | 141.8 | 155.10 | 170. | 171.5 | 187. |
| 18 | 135. | 148.6 | 150. | 165. | 180. | 181.6 | 198. |
| 19 | 142.6 | 156.9 | 158.4 | 174.2 | 190. | 191.7 | 249. |
| 20 | 150. | 165. | 166.8 | 183.4 | 200. | 201.8 | 220. |
| 21 | 157.6 | 173.3 | 175. | 192.6 | 210. | 211.9 | 231. |
| 22 | 165. | 181.6 | 183.4 | 201.8 | 220. | 231.10 | 242. |
| 23 | 172.6 | 189.9 | 191.8 | 210.10 | 230. | 231.11 | 253. |
| 24 | 180. | 198. | 200. | 220. | 240. | $\stackrel{2}{2} 2$. | 264. |
| 25 | 187.6 | 206.3 | 208.4 | 229.2 | 250. | 252.1 | 275. |
| 26 | 195. | 214.6 | 216.8 | 238.4 | 260. | 2622 | 286. |
| 27 | 202.6 | 222.9 | 225. | 247.6 | 270. | 27.4 | 297. |
| 28 | 210. | 231. | 233.4 | 256.8 | 280. | 282.4 | 308. |
| 29 | 217.6 | 239.3 | 241.8 | 265.10 | 290. | 292.5 | 819. |
| 30 | 225. | 947.6 | 250. | 275. | 300. | 302.6 | 330. |

Explanation.-Find the length in feet in the left hand column, and the dimensions of the sides in inches at the head of the other column, and underneath the latter and opposite the length will be found the contents in feet and inches board measure.

## CASK-GAUGING.



Casks are usually comprised under the following figures, viz.:

1. The middle frustum of a spheroid.
2. The middle frustum of a parabolic spindle.
3. The two equal frustums of a paraboloid.
4. The two equal frustums of a cone.

Their contents can be computed by the rules for ascertaining the contents of these figures.

But in almost all ordinary casks the bilge or swell from
the bung to the head (not from head to head) is so small, that they are, with scarcely an appreciable difference in the results, usually regarded as the two equal frustums of a cone, and are very accurately gauged by three dimensions, as follows:

To find the contents of a cask.by three dimensions.
Rule.-Add the bung and head diameters in inches, and divide them by 2 for the mean diameter; find the arca of the mean diameter in the table of the areas of circles on page 298 and multiply it by the length of the cask in inches; then divide the product by 231 (the cubic inches in a gallon), and the quotient will be the number of gallons the cask contains.

Example.-What are the contents in gallons of a cask, the bung diameter of which is 22 inches, the head diameter 20 inches, and the length 32 inches?

Solution. $-22+20=42 \div 2=21$, mean diameter: then 346.36 , area of mean diameter, $\times 32=11083.52 \div 231=$ 47.98 gallons. Ans.

When the cask is much bilged or rounded from the bung to the head, a more accurate way is to gange by four dimensions, as follows:

To find the contents' of a cask by four dimensions.
Rule.-Add the head and bung diameters in inches, and the diameter taken in inches in the middle between the bung and head, and divide their sum by 3 for the mean diameter; find the area of the mean diameter in the table
of the areas of circles on page 298 and multiply it by the length of the cask in inches and divide the product by 231 (the cubic inches in a gallon), and the quotient will be the contents of the cask in gallons.

Example.-What are the contents in gallons of a cask, the bung diameter of which is 24 inches, the middle diameter 20 inches, the head diameter 16 inches, and its length 40 inches?

Soldtion- $-24+20+16=60 \div 3=20$, mean diameter : then 314.16, area of mean diameter, $\times 40$ inches, length $=$ $12566.40 \div 231=54.4$ galls. Ans.

## CAPACITY OF BOXES.

A box 24 inehes by 16 inches square, and 28 inches deep, will contain a barrel (5 bushels).
A box $2 \pm$ inches square and 14 inches deep, will contain half a barrel.
A box 26 incles by 15.2 inches square, and 8 inches deep, will contain one bushel.

A box 12 inches by 11.2 inches square, and 3 inehes deep, will eontain half a bushel.
A box 8 inches by 8.4 inehes square, and 8 inches deep, will contain one peck.

A box 8 inehes by 8 inches square, and 4.2 inches decp, will contain one gailon.

A box 7 inches by 4 inches square, and 4.8 inches deep, will contain half a gallon.

A box 4 inches by 4 inches square, and 4.1 inches deep, will contain one quart.

## CAPACITY OF WAGON-BEDS.



In most of the Eastern and many of the Western cities all market-men and traders, who make use of their wagon-beds as measures, are required to have them gauged and their capacity stamped on them by an officer appointed for that purpose. The wagon-makers in the country should stamp the contents in bushels on each bed they make before it leaves the shop. Should it be neglected, the following rule will enable every farmer to measure the contents in bushels of his wagon-bed for himself:

## To find the contents of wagon-beds.

Rule.-If the opposite sides are parallel, multiply the length inside in inches, by the breadth inside in inches, and that again by the depth inside in inches, and divide
the product by 2150.42 (the number of cubic inches in a bushel), and the quotient will be the capacity in bushels.

Example. -What is the capacity of a wagou-bed 10 feet long, 4 feet wide, and 15 inches deep?

Solution. -120 inches, length, $\times 48$ inches, width, $\times 15$ inches, depth, $=86400 \div 2150.42=40$ bushels. Ans.

Rule 2.-Should the head and tail boards, or either of them, be set in bevelling, add the top and bottom lengths together and divide by 2 for the mean length, and proceed by the foregoing rule. Should the sides be sloping, add the top and bottom widths, and divide by 2 for the mean width, and proceed by the foregoing rule.

Should the contents be required in cubic feet, divide the product by 1728 (the number of cubic inches in a cubic foot), instead of 2154.42 , and the quotient will be the contents in cubic feet.


## FALSE BALANCES.



To detect false balances, scales, dec.
Rule.-After weighing the article transpose the weight and the article weighed, and if the latter is too light the weight will preponderate; if too heavy the article will preponderate.

To find the true weight.
Role.-After transposing them as above, find the additional weight that will produce an equilibrium: weigh it with the article by the same balances: multiply the two false weights thus found, together, and the square root of the product will be the true weight.

Example.-An article weighs 7 lbs. by a false balance: transposed it is found too light, and requires an additional weight to produce a counterpoise: this additional weight is found by the same balances to have a false weight of $9 \frac{1}{7}$ lbs. What is the true weight of the article?

Solution. $-9 \frac{1}{7} \times 7=64$, the square root of which is 8 lbs ., the weight. Ans.

Example 2.-An article weighs 7 lbs : transposed it is found too heavy, weighing only $5 \frac{1}{7} \mathrm{lbs}$. by the same scales. What is the true weight?

Soldtion. $-7 \times 5 \frac{1}{7}=36$, the square root of which is 6 lbs ., the true weight. Ans.

Note.-In the 1st example the additional weight is added to the article to produce the equilibrium: in the second example the deficiency is taken from the weight to produce the counterpoise.


## CISTERNS.

To find the number of gallons in square or oblong square cisterns.

Rule.-Multiply the length in inches by the width in inches, and that by the depth in inches, and divide the product by 231 . The quotient will be the number of gallans.

Example.-Given, a cistern 6 feet long by 3 feet wide and 4 feet deep; how many gallons will it contain?
Souvtron. -72 inches, length, $\times 36$ inches, width, $\times 48$ inches, depth,$=124416 \div 231=538.59$ galls. Ans.

To find the number of gallons in triangular cisterns.


Roce.-Multiply the base $a^{\cdot} b$ in inches, by the perpendicular height $c d$ in inches, and half that sum by the depth in inches, and divide the product by 231. The quotient will be the number of gallons.

Example.-Given, a triangular cistern 8 feet at the base or longest side, 7 feet in perpendicular height, 4 feet deep. How many gallons will it contain?

Solution. -96 inches, base, $\times 84$, perpendicular height in inches, $\div 2=4032 \times 48$, depth in inches, $=112896 \div 231$ $=488.72$ galls. Ans.

To find the number of gallons in circular cisterns.
Rule.-Find the area of the circle in square inches, in the table of the "Areas of Circles," on page 298, or by the rule given on page 296. Then multiply the area by the depth in inches, and divide the product by 231 . The quotient will be the number of gallons.

Example.-Given, a cistern 8 feet in diameter by 5 feet deep. How many gallons will it contain?

Solutron.-Area, the diameter being 96 inches 7238.2

| Multiplied by 60 in., the depth, gives | $\overline{43429.20}$ |
| :--- | :--- |
| Divided by 231 , cubic in.in a gall., " | 1880. |
| gall. Ans. |  |

Table, showing the contents of circular cisterns from 1 foot to 25 feet in diameter, for each 10 inches in depth.

| Diameter, | Gallons. | Drameter. | Gallons. |
| :---: | ---: | :---: | ---: |
| 1 | 4.896 | $7 \frac{1}{8}$ | 271.072 |
| $1 \frac{1}{2}$ | 11.015 | 8 | 313.340 |
| 2 | 19.583 | $8 \frac{1}{2}$ | 353.735 |
| $2 \frac{1}{2}$ | 30.545 | 9 | 396.573 |
| 3 | 44.064 | 91 | 441.861 |
| $3 \frac{1}{2}$ | 59.980 | 10 | 489.600 |
| 4 | 78.333 | 11 | 592.400 |
| $4 \frac{1}{2}$ | 99.116 | 12 | 705. |
| 5 | 122.400 | 13 | 827.450 |
| $5 \frac{1}{2}$ | 148.546 | 14 | 959.613 |
| 6 | 176.253 | 15 | 1101.610 |
| $6 \frac{1}{2}$ | 206.855 | 20 | 1958.421 |
| 7 | 239.906 | 25 | 3059.934 |

## To find the number of gallons in tub-shaped cisterns.

Rule.-Find the cubes of the top and bottom diameters in inches, by means of the table on page 303, divide the difference between those cubes by the difference of the diameters in inches, and multiply this quotient by .7854, and again by $\frac{1}{3}$ of the depth in inches, and divide the product by 231 . The quotient will be the number of gallons.

Example.-Given, a tub-shaped cistern of a top diameter of 10 feet, a bottom diameter of 8 feet, and 6 feet deep. How many gallons will it contain?

| Soldtion.-Cube of 120 inches, the top diameter, " 96 <br> " <br> bottom | $\begin{array}{r} 1728000 \\ 884736 \end{array}$ |
| :---: | :---: |
| Difference between cnbes of diameters, | 843264 |
| Divided by 24, difference of diameters, gives | . 35136 |
| Multiplied by . 7854 , gives | 27595.8144 |
| " again by $24, \frac{1}{8}$ the depth in inches, gives | 662299.5456 |
| Divided by 231, cubic inches in a gallon, gi galls. Ans. | 2867.09 |

Rule 2.-Add the top and bottom diameters in inches and divide by 2 for the mean diameter. Find the area in square inches of the mean diameter by means of the table on page 298 or by the rule given on page 296. Multiply the area by the depth in inches, and divide the product by 231 , and the quotient will be the number of gallons.

Example.-What are the contents in gallons of a cistern 8 feet diameter at the top, 6 feet at the bottom, and 4 feet deep?

Solution.-96 inches +72 inches $=168 \div 2=84$ inches, mean diameter; 费hen 5541.77, area of mean diameter, $\times 48$ inches, depth,$=266004.96 \div 231=1151.53$ gallons. Ans.

Note.-The quantity of water which falls upon most farm buildings is sufficient to afford an ample supply for the domestic animals of the farm, when other supplies fail, were cisterns large enough to hold it provided. The average amount of rain that falls in the latitude of the Northern States during the year, is about 3 feet per year, or 3 inches per month. Every inch in depth that falls upon a roof yields 2 barrels for each ten feet square, and 72 barrels a year are yielded by 3 feet of rain. A barn 30 by 40 feet supplies annually from its roof 864 barrels, which is more than 2 barrels per day, the year round.

The size of cisterns should vary according to their intended use. If they are to furnish a daily supply of water, they need not be so large as for saving supplies against summer and droughts.

The size of the cistern in daily use need not exceed that of a body of water on the whole roof of the building, 7 inches deep, or two months' greatest fall of rain. Cisterns intended to save the water to draw from in time of drought, should be about three times as large.

To ascertain the size of cisterns adapted to roofs, dec.
Role.-Multiply the length of the roof in inches by the breadth in inches, and that by the depth of the fall of rain required to be saved, and divide the product by 231 , and
the quotient will be the number of gallons. Divide the number of gallons by $31 \frac{1}{2}$, and it will give the number of barrels.

Example.-What must be the capacity of a cistern to contain the water running from a roof 40 feet long by 30 wide, for 2 months: estimated fall of rain 7 inches?

Solution.- -480 inches, length, $\times 360$ inches, width, $\times 7$ inches, depth of rain, $=1909600 \div 231=8266 \frac{2}{3}$ galls. Ans.

Note.-To ascertain the necessary dimensions of a cistern large enough to contain $8266 \frac{2}{3}$ gallons, consult the foregoing table. It will there be found that a cistern 13 feet in diameter contains 827 gallons for each 10 inches in depth. To give the cistern 10 times that depth, or 100 inches ( $8 \frac{1}{3}$ feet) will make it contain 8270 gallons. Hence a cistern 13 feet in diameter, and $8 \frac{1}{3}$ feet deep, will be large enough.

To further aid the inquirer in ascertaining the requisite diameters of cisterns for the above purposes, we subjoin an additional

Table, showing the contents of circular cisterns in barrels for each foot in depth.
5 feet................................................... 4.66
6 " .................................................. .. 6.74
7 "..........................................
8 " ................................................... 11.93
9 ، ...................... . ......................... . . . 15.10
10 " .................................................... . . 18.65


The above cut represents the sectional view of a filtered cistern, with a brick wall partition in the middle and the box of charcoal and sand at the bottom, with alternate layers of each. The pipe at the left leads from the roof, and the one at the right connects with the pump. With this style of cistern properly constructed, no one need be in want of pure wholesome water.

To construct a filtering cistern to furnish pure water for domestic use.
Ruce.-Divide the cistern into two equal compartments by a wall of brick or stone, open at the bottom to the height of about six inches, and water-tight thence to the top. Let one compartment be for receiving the water, and the other for containing it when filtered and ready for use. Put alternate layers, 6 inches deep, of gravel, sand,
and pounded charcoal at the bottom of the former, and sand and gravel at the bottom of the latter. The former will receive the water from the pipe, and it will rise filtered in the latter.

Another .Mode.-Divide the cistern as above by a double open wall of stone or brick, with an interspace of about six inches between the walls. Fill the interspace with sand and pounded charcoal. Let one compartment receive the water, and it will pass through the filter into the other ready for use.


## HYDRAULICS.

The science of hydraulics treats of the motion of nonelastic fluids; hydrodynamics, of the force of that motion; and hydrostatics, of the pressure, weight, and equilibrium.

THE FUNDAMENTAL LAWS OF HYDRAULICS, \&c.

1. Descending water is governed by the same laws as falling bodies.
2. Water will fall 1 foot in $\frac{1}{4}$ of a second, 4 feet in $\frac{1}{2}$ a second, and 9 feet in $\frac{3}{4}$ of a second, and so on in the same ratio.
3. The velocity of a fluid propelled through an orifice by a head of water in a cistern or reservoir, is the same that a body would acquire by falling perpendicularly through a space equal to that between the top of the head and the centre of the opening, less the friotion which, in pipes, drains, and sluices, increases as the square of the velocity.
4. The mean velocity of water propelled through an opening by a head of 1 foot is $5 \frac{2}{5}$ feet per second.
5. Fluids press equally in all directions.
6. The pressure of a fluid on the bottom of a vessel is as
the base and perpendicular height, whatever may be the figure of the vessel.
7. The pressure of a fluid on any kind of surface, horizontal, vertical, or oblique, is equal to the weight of the column of the fluid, the base of which is equal to the area of the surface pressed, and the height of which is equal to the distance from the surface of the fluid to its centre of gravity, on the surface pressed.
8. The side of a vessel filled with water sustains a pressure equal to the area of the side multiplied by half the depth, whether the sides be vertical, oblique, or horizontal.
9. If the vessel be tub-shaped, or in the form of an inverted frustum of a cone or pyramid, the bottom sustains a pressure equal to the area of the bottom and the depth of the fluid.
10. The quantity of water that will flow out of a perpendicular slit or aperture from the surface of the head to its base, is but two-thirds of what would flow out of a slit of the same dimensions were it horizontal at the level of the base.
11. A ciroular pipe of the same area as a square, triangular, or irregular one, will discharge more water in a given time.
12. The greater the length of the discharging pipe, the less the discharge, unless the pipe be perpendicular.
13. A pipe that is inclined will discharge more water in a given time than a horizontal pipe of the same dimensions.
14. The friction of a fluid is greater in small than in large pipes, when equal quantities are discharged.
15. In perpendicular pipes, the discharge being governed by the law of gravitation, the greater the length of the pipe, the greater the discharge.
16. When a prismatic vessel empties itself through an aperture, twice the quantity would be discharged in the same time if it were kept full.
17. In a stream, sluice, or ditch, the velocity is the greatest at the surface and in the middle of the current.
18. The time occupied by a given quantity of water passing through pipes or sewers of equal apertures and lengths, and with equal falls, is in the following proportions, viz.: In a straight line, as 90 ; in a regular curve, as 100 ; and in passing a right angle, as 140.

To find the velocity of a stream issuing from a head of water.

Rule.-Multiply the height of the head in feet by 64.33, and the square root of the product will be the velocity in feet per second.

Example.-What is the velocity of a stream projected through an opening by a head of 12 feet?

- Solution. $-12 \times 64.33=771.96$, the square root of which is 27.780 feet per second. Ans.

To find the head, the velocity being given.
Rowe.-Square the velocity and divide it by 64.33 , and the quotient will be the head in feet.

Example.-What is the head of water that projects a stream 27.780 feet per second?

Solution.-27.780 $=771.96 \div 64.33=12$ feet. Ans.
Note.-In the above results no allowance is made for friction, which should be made in order to ascertain the practical results. The friction of water passing out of orifices, and not through pipes, sluices, or sewers, is, however, very small.

To find the quantity of water that will issue from an opening, the dimensions of the opening and the head being given.

Roxe.-Find the velocity of the jet or stream by the foregoing rule, and multiply it by the area of the orifice in feet, and the product will be the number of cubic feet per second the orifice will discharge.

Example.-How much water will an orifice of an area of 2 square feet discharge per second under a head of 12 feet?

Solution. $-12 \times 64.33=771.96$, the square root of which is 27.780 feet velocity; then, $27.780 \times 2$ feet, area, $=55 \frac{7}{26}$ cubic feet per second. Ans.


To find the velocity of currents in drains, ditches, shuices, brooks, or rivers.
Rule.-Find the velocity of the surface of the current in the middle of the stream by taking the number of inches a floating body passes over it in one second.

This, for all ordinary practical purposes, will be suficient. But to find the mean or average velocity, take the square root of the velocity so found, double it, and deduct it from the velocity at the top, and add one to the remainder, and the result will be the velocity at the bottom. Add the top and bottom velocities, and divide them by two for the mean velocity.
Example.-What is the mean velocity of a current, the velocity of which at the surface, in the middle of the stream, is 36 inches per second?

Solution. $-\sqrt{ } 36=6 \times 2=12-36=24+1=25$, velocity
at bottom; then, $36+25=61 \div 2=30.5$ inches per second, mean velocity. Ans.

To find the volume of water discharged by drains, sluices, brooks, dec., of given dimensions, in a given time.

Rule.-Multiply the velocity of the current per second in feet, by the area of the transverse section of the drain or sluice, in feet, and the product will be the quantity discharged per second, in cubic feet.

Example.-What volume of water will a drain 2 feet wide and 3 feet deep discharge in one hour, the mean velocity of the current being 30 inches per second?

Solution. $-2 \times 3=6 \mathrm{sq}$. ft., area of section $\times 2 \frac{1}{2} \mathrm{ft}$., velocity, $=15$ cubic feet discharged per second; then, $15 \times$ 3600 seconds (one hour) $=54,000$ cubic feet per hour. Ans.

Note.-The standard gallon contains 231 cubic inches, and a cubic foot contains 1728 cubic inches. Accordingly, a cubic foot of water contains 7.476 standard gallons. Hence, if we multiply the number of cubic feet by 7.476 , it will give the number of gallons. For instance, the drain in the above example discharges 54,000 cubic feet per hour, which, multiplied by 7.476 , gives 403,704 gallons discharged per hour.

To find the velocity of water running through pipes.
Rule.-Multiply the height of the head in feet by 2500 ; divide this product by a divisor obtained as follows: Di-
vide 13.88 by the diameter of the pipe in inches, and multiply the quotient by the length of the pipe in feet, and the result will be the divisor aforesaid. Divide the first product by this sum, and the square root of the quotient will be the velocity in feet per second of the current in the pipe.

Example.-What is the velocity of water in a pipe 5 inches diameter and 100 fect long, and under a head of 2 feet?

SOLUTION. $-13.88 \div 5=2.776 \times 100=277.6$ and $2500 \times 2$ $=5000$; then, $5000 \div 277.6=18$, the sq. root of which is 4.24 feet. Ans.

To find the quantity of water discharged through pipes.
Rule.-Maltiply the velocity of the current per second in feet by the area of the transverse section of the pipe in feet, and the product will be the quantity discharged in cubic feet per second.

Example.- What quantity of water will a pipe 6 inches diameter and 100 feet long discharge per hour under a head of 2 feet?

Solution.-By the preceding rule, find the velocity of the current in the pipe, thus: $2500 \times 2$ feet, head, $=5000$, $13.88 \div 6$ inches, the diameter of the pipe, $=2.313 \times 100$ feet, length of the pipe, $=231.3$, divisor ; $5000 \div 231.3=$ 24.34 , the square root of which is 4.80 feet, velocity per second. Then, $4.80 \times .1963$ square feet, area of pipe, $=$
.942 cubic feet discharged pei second. . $942 \times 3600$ seconds (one hour) $=3391$ cubic ft . discharged per hour. Ans.

To find the pressure of a fluid on the bottom of a vessel, cistern, or reservoir

Rule.-Multiply the area of the base in square feet by the height of the fluid in feet, and their product by the weight of a cubic foot of the fluid.

Example.-What is the pressure on the bottom of a cistern 10 feet in diameter and 8 feet deep, filled with water?

Solution.-78.54, area of bottom, $\times 8=628.32 \times 62 \frac{1}{2}$ lbs., the weight of a cubic foot of water,$=39.370 \mathrm{lbs}$. Ans.

To find the pressure on the side of a vessel.
Rule.-Multiply the area of the side in feet by half its depth in feet, and that by the lbs. per cubic foot of the fluid.

Example.-What is the pressure upon the sloping side of a pond 10 feet square by 8 feet deep?

Solution.- $10^{2}=100 \times 4$, half the depth, $=400 \times 62 \frac{1}{2} \mathrm{lbs}$, the weight of a cubic foot of water $=25000 \mathrm{lbs}$. Ans.

Note.-It is proper to remark that all of these rules, while they are theoretically correct, do not pretend to embrace a variety of circumstances which affect the flow of water through apertures, and which should be taken into consideration in all cases. These circumstances cannot be
measured by rules, and the just estimate of their influence must depend on experience.

1. Water will flow more rapidly from an aperture in a . vessel if a funnel-shaped tun or a rapidly widening trough be attached to it on the ontside. This prevents, so to speak, the intercrossing of the currents as they flow over the sides of the aperture; instead of obstructing itself; by reason of its tendency to cross the centre of the opening, the water follows the sides of the funnel or trough, and allows the full area of the opening to discharge freely.
2. The ease with which a given quantity of water can be made to pass through a pipe depends (other things being equal) upon the proportion between the area of the opening and st circumference-the latter being a source of friction. (See Nos. 14 and 11 above.)
3. The ease of the flow depends on the perfect uniformity of the channel. A lump or any other inequality in the side of a pipe will disturb the current and cause the water to obstruct itself. Perfect form is more important than a smooth surface.
4. The same principle operates in the case of deflections from a straight line. If the water is turned ont of its cquise the evenness of the flow is disturbed, and it becomes more difficult (see No. 18 above). The influence of a "regular curve" is in proportion to its radius; more water will flow through a pipe which turns in a large circle than in one which turns more abruptly.


## - THE HYDRAULIC RAM.

The kydraulic ram is a machine for forcing a portion of a brook or stream to any reqnired elevation and distance, when the requisite head or pressure can be obtained.
Wherever a large spring or a limited but constant stream is at land, by which a fall of four or five feet may be produced, by brilding a dam or otherwise, a portion of the water of such spring or stream may be raised to a perpendicular height of more than 100 feet by its own power, through the agency of the water-ram. Thus, a stream in a deep valley, or a rivulet or brook situated some distance below a point where it is desired to have a cistern or reservoir, may be made to raise a part of its water by one of these machines. From such a cistern or reservoir the water may afterwards be conveyed to any part of the premises below it, and applied for the purpose of irrigation, watering of stock, manufactories, or domestic or ornamental use.
The power of the ram, and the height to which it will raise the water, as also the quantity raised, are in proportion to the volume of the stream and the head or fall obtained.

The ram is applicable where no more than 18 inches fall can be obtained.

The distance which the water has to be conveyed, and the consequent length of pipe, have also a bearing upon the quantity raised and its elevation, as the larger the pipe through which the water has to be forced, the greater the friction to be overcome, and the more the power consumed in the operation.

The ram can be applied to convey water a distance of from 100 to 200 rods, and to elevations of from 100 to 200 feet.

A fall of 10 feet from the spring or brook to the ram is sufficient to force the water to any elevation not over 150 feet above the ram, and in distance not over 150 rods from it.

Although the same fall will raise water to a much greater elevation, and force it to a greater distance, yet the quantity will diminish as the height and distance are increased.

When a sufficient quantity of water is raised by an adequate fall the fall should not be increased, as by so doing the strain upon the ram is unnecessarily increased, and its durability lessened.

The proportion which the height to which the water is raised, and the quantity raised, bear to the fall and to the volume of the spring or stream, is about five times the height of the fall, and $\frac{1}{7}$ of the volume of the stream forced a distance of 50 rods-allowing for the friction in both the supply and discharging pipes.

Thus, if the ram be placed under a fall of 5 feet, for every 7 gallons drawn from the spring, 1 gallon may be raised 25 feet, or $\frac{1}{2}$ a gallon 50 feet, and forced a distance of 50 rods. If the fall be 10 feet, it will raise one gallon 50 feet, or $\frac{1}{2}$ a gallon 100 feet, for every 7 gallons discharged by the stream. If the fall be 10 feet, and the volume of the stream be doubled, it will raise 1 gallon 100 feet, and so on in the same ratio.

The pipe leading from the spring or head of the fall to the ram is called the supply pipe.

The pipe leading from the ram to the reservoir or cistern is called the discharging pipe.

The shorter and straighter the supply pipe, the better. Hence, unless the supply pipe is laid to the head of a spring, it is better to dam the stream at the head of its greatest fall, and after inserting the supply pipe at the base of the dam, let it follow the depression of the bed of the stream to the ram at the lowest point.

The shorter and straighter the discharging pipe the better; there is less friction to be overcome.

Should it be necessary to curve either pipe, let the radius of the curve be as large as possible.

To ascertain the quantity of water and the height to which it may be elevated by a given fall and volume of water-discharging pipe not over 50 rods.

Rule.-Find, by means of a common level, the fall of your spring or stream; then find the quantity of water it 5*
discharges per minute or hour, by means of the rule given for that purpose on page 98 ; then multiply the height of the fall by 5 , for the elevation, and divide the number of gallons discharged by the stream by 7 , for the quantity of water raised.

Example.-Given, a spring with a fall of 8 feet, discharging 28 gallons per minute. How high and how much water will it raise per minute by means of a ramdischarging pipe not exceeding 50 rods?

Solution. $-8 \times 5=40$ feet elevation. $28 \div 7=4$ gals. per minate. Ans.

Notr.-In the same ratio, it will raise 2 gallons 80 feet per minute, or 1 gallon 160 feet per minute, and so on.
The following working results of water rams now in actual use, will enable the inquirer to ascertain the elevating capacity of springs, with various falls and volume of water. The rams used are "Rumsey \& Co.'s Premium Hydraulic Rams," Seneca Falls, N. Y.

| Fall from surface of water in spring | 4 feet. |
| :---: | :---: |
| Length of supply pipe, inside diameter 1 inch |  |
| Volume of water discharged by spring in 10 | 25 gallons. |
| Length of discharging pipe, inner diameter $\frac{8}{8}$ inch, curved in three places to a semicirclo. |  |
| Slevation of discharging pipe from |  |
| Discharged every ten minutes | $3 \frac{1}{4}$ gallons. |
| 2.-Fall from surface of water in spring to | 10 feet. |
| Length of supply pipe, inside diameter $1 \frac{1}{4}$ inche |  |
| Volume of water discharged hy spring per minut | 20 gallons. |
| Length of discharging pipe, $\frac{1}{2}$ inch inside diameter | 50 rods. |
| Elevation of discharging pipe from ram to cistern | 85 feet. |
| Discharged per minute | 2\% gallons. |

3 -Fall from surface of water in spring to ram. ..... 32 feet.Length of supply pipe, inside diameter ${ }^{4}+\frac{1}{}$ inchesVolume of water discharged by spring30
not given.
Lungth of discharging pipe inside diameter $\frac{1}{2}$ inch.
E'evation of discharging pipe from ram to cistern. ..... 35 feet.
Discharged a constant stream $\frac{3}{2}$ inch diameter.
4.-Fall from surface of water in spring ..... 12 feet.
Length of supply pipe, inside diameter $1 \frac{1}{2}$ inches ..... 32
Volume of water discharged by spring. ..... not given.
Length of discharging lipe, inside diameter $\frac{1}{2}$ inch ..... 14 rods.
Elevation of discharging pipe from ram to cistern at barn. ..... 35 feet.
Discharged a eonstint stream $\frac{1}{2}$ inch diameter, at barn, afford-ing more than a supply for $5^{2} 2 \mathrm{head}$ of cattle.
5.- Fall from surface of water in spring to ram. ..... 9 feet.
Length of supply pipe. inside diameter one inch. ..... 50
Volume of water discharged by spring. ..... not given.
Length of discharging pipe. inside diameter $\frac{1}{2}$ ineh. ..... 100 feet.
Elevation of discharging pipe from ram to cistern. ..... 35 "
Discharges a constant stream. $\frac{1}{2}$ ineh diameter, into a cisternat house and after supplying water for the domestic use ofa large family, passes off to the cattle yard 20 rods further,affording an abundant supply for a large herd of cattle.
6.-Fall from surface of water in spring to ram ..... 8 feet.
Length of supply pipe, inside diameter $1 \frac{1}{2}$ inches ..... not given.
Volume of water discharged by spring
Length of discharging pipe, $\frac{1}{2}$ inch inside diameter, ..... 70 rods.
Elevation of discharging pipe from ram to cistern. ..... 80 feet.
Delivers a good supply of running water at house and barn,sufficient for all necessary purposes.
7.-Fall of water from surfaee of spring to ram. ..... 10 feet.
Length of supply pipe, inside diameter $1 \frac{1}{2}$ inches. not given. ..... "
Volume of water diseharged by spring.
Length of discharging pipe. $\frac{1}{2}$ inch inside diameter. ..... 76 rods.
Elevation of discharging pipe from ram to cistern. ..... 110 feet.Delivers a constant stream of $\frac{1}{2}$ inch diameter.
8. Fall from surface of spring to ram ..... 61 feet.
Length of supply pipe, inside diameter $1 \frac{1}{2}$ inches ..... 60 rods.
Elevation of discliarging pipe from ram to cistern ..... 60 feet.Discharges sufficient water in barn yard to supply 30 head of cattle.
9.-Fall from surface of spring to ram. ..... 9 feet.
Size of supply pipe, inside diameter 2 inehes. length. ..... not given.
Length of discharging pipe, inside diameter $\frac{5}{8}$ inch. ..... 150 rods.
Elevation of discharging pipe from ram to cistern ..... 130 feet.
Delivers an abundant supply of water for house, barn, barn-yard and hog-pen.

| 10.-Fall from surface of dam to ram | 7 feet. |
| :---: | :---: |
| Lengtb and size of supply pipe | not given. |
| Volume of water discharged by strean |  |
| Lergth of discharging pipe, (sıze not given). | 126 rods. |
| Elcvation of discharging pipe from ram to cister | 75 feet. |
| Discharges 25 barrels of water in 24 hours. |  |
| 11.-Fall from spring to ram | 11 feet. |
| Size of supply pipe, 2 inches calibre; length | 42 |
| Length of discharging pipe, $\frac{1}{2}$ inch calibre | 75 rods. |
| Elevation of discharging pipe from ram to cistern. | 98 feet. |
| Discharges over 30 barrels of water per day. |  |

Notr.-The size, strength, and weight of the supply and discharging pipes must be in proportion to the head or pressure on them. They are proportioned and adjusted to the capacity of the ram by the manufacturer, and are generally sold with the machine.
When a very large supply of water is required for manufacturing or other purposes, and a stream of sufficient volume and fall is obtained, it is better to set two or three rams of a smaller size, all playing into one discharging pipe, than to set one large ram. If one ram becomes disabled, the others supply the demand.
Should the fall and volume of one stream or spring not supply enough water, and. at the required elevation, and there be other springs near by, set a ram in each, all meeting in one discharging pipe. Their combined power will increase the elevation and the quantity raised.

The pipes can be so laid, and the ram so set, as to protect them from the frost during the winter.
Thie fall of one spring or stream may be ased to raise the water of another and better spring or stream, whose own fall is not sufficient.

Mr. H. L. Emery, of Albany, in a communication to the Country Gentleman, says: "The result of a water ram is calculated upon the principle that a pound of foree will raise a pound of water an equal height, and a less quantity to a greater height, which height is limited only by the strength of the pipes themselves.
"To enable any one to select the size ram it is necessary to compute the elevation to be overcome, and the greatest amount of fall which can be conveniently obtained, and divide the first by the last, and the quotient will be the proportion of the water (passing through the drive-pipe) which will be raised; first, however, deducting for waste of power and friction say $\frac{1}{4}$ of the amount; thus, with ten feet fall and one hundred feet elevation, one-tenth of the water would be raised, if there were no friction or loss; but deducting, say one-qnarter for loss, and $7 \frac{1}{2}$ gallons for each 100 gallons would be raised, all the balance of the water being required or wasted to accomplish this result."


## THE HYDRAULIC PRESS.



The Hydraulic or Hydrostatic Press is a machine by which a small force may be made to exert a great pressure. Its construction may be understood by the above cut. Two metallic cylinders, $A$ and $B$, of different sizes, are joined together by a tube K . In the small cylinder there is a piston $p$ which can be moved up and down by the handle
M. In the large cylinder there is also a piston $P$, having at its upper end a large iron plate, which moves freely up and down in a strong frame-work $Q$. Between the iron plate and the top of this framework the body to be pressed is placed. Now, when the small piston is raised, the cylinder A is filled with water drawn from the reservoir H , below, and when it is pushed down this water is forced into the large cylinder through the pipe K . There is a valve in this tube which prevents the water from returning, so that each stroke of the small piston pushes an additional quantity of water into the large cylinder. By this means the large piston is pushed up against the body to be pressed. To calculate the pressure exerted by the large piston we must remember that the force acting upon the piston in A , will be exerted upon every equal amount of surface in $B$. To illustrate this: suppose the area of the large piston to be 10 times the area of the small one; then one pound at A will produce a pressure of ten pounds at $P$. The handle $M$ increases the advantage still more, according to the principle of the lever to be explained in a future chapter. By increasing the size of the large cylinder, and diminishing the size of the small one, the pressure exerted by a given power will be increased proportionately. The weight of a man's hand might thus be made to lift a ship with all its cargo. The only limit to the increase of power would be the strength of the material of which the machine is made.

## WEIGHT OF LEAD PIPE.

Table, showing the weight of lead pipe per yard, from $\frac{1}{4}$ to $4 \frac{1}{2}$ inches diameter.

| Diameter. |  | piameter. |  | Weight in lbs. oz. |
| :---: | :---: | :---: | :---: | :---: |
| $\frac{1}{4}$ inch | medium. . . . . . . . . . . 3 | $1{ }_{2}$ inch | extra llght. . | 9 |
| *. ${ }^{1}$ | strong\%.. . . . . . . . . . . . 4 | * 41 | light | 13 |
| $\frac{1}{2}{ }^{4}$ | light.. . . . . . . . . . . . . . . 3 | " " | medium. | . 15 - |
| ${ }^{4} 6$ | medium.............. 4 | " "6 st | strong. | 19 |
| " ${ }^{4}$ | strong . . . . . . . . . . . . . . . 5 | $1 \frac{3}{4}{ }^{6}$ | medium | . 16 |
| 6 6 | extra strong , . . . . . . . 66 | $4{ }^{4}$ | strong | 20 |
| 兵 ${ }^{4}$ | light................. 5 | 2 " | light. | . 161 편 |
| ، 6 | medium.............. 6 | " ${ }^{6}$ | medium. | . 20 |
| " ${ }^{6}$ | strong. . . . . . . . . . . . 78 | " * | strong. | . 23 |
| 4 6 | extra strong......... 8 8 | $2 \frac{1}{3}$ | light | . . 25 |
| $\frac{3}{4}$ " | " light........... 5 | ,4 6 | medium | . 30 |
| " ${ }^{6}$ | light................. 6 | " 6 | strong. | . 35 |
| (6) | medium. . . . . . . . . . . 8 | $3 *$ | light. | . 30 |
| " 6 | strong. . . . . . . . . . . . . 912 | " 4 | medium | . 35 |
| ${ }^{6}$ " | extra strong.......... 108 | " ${ }^{1}$ | stroog | 44 |
| 1 " | . $\quad$ Iight.......... 614 | $3 \frac{1}{2} 4$ | medinm | . 45 |
| 16 | light. ................ 8 8 | " ${ }^{2}$ | strong | . 54 |
| $6_{6} 6$ | medium............. 10 5 | " ${ }^{4}$ | extra strong. | . 70 |
| ${ }^{6}$ " | strong. . . . . . . . . . . . . 124 | $4{ }^{4}$ | waste, light. | . . 1514 |
| $11^{\prime \prime}$ | extra light. . . . . . . . . . 85 | " 6 | * medinm | . 21 |
| 6 " | light. ............... ${ }^{9} 12$ | " 4 | " strong. | . 26 |
| 6 * | medium.............. 11 | 41 ${ }^{6}$ | * light | .. 174 |
| " " | strong. . . . . . . . . . . . . 128 | " ${ }^{\text {a }}$ | * medium | . . $2 t$ |
| $6{ }^{6}$ | extra strong . . . . 1410 | 4 " | "i strong | 29 |

Very light pipe.


Note.-Should the pipe be sold by the pound, multiply the price per lb . by the weight per yard in the above table, and it will give the price per yard.

## FUEL．

The following table，abridged from Browne＇s Sylva Anericana，will be found valuable to housekeepers in aid－ ing them to form an estimate of the comparative value of fire woods in a seasoned state，or when burnt to clarcoal． Table，showing the Comparative Values of Fire Woods．

| W00Ds． |  |  |  | 若 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Shellbark Hickory， | 1.000 | 4469 | ． 625 | 82.89 | 1172 | 36 | 100 |
| Common Walnut， | ． 919 | 4－41 | ． 687 | 33.52 | 1070 | 32 | 95 |
| White Oak | ． 855 | 3821 | ． 401 | 21.10 | $8: 6$ | 39 | 81 |
| Thick Shellbark Fickory，． | ． 829 | 3705 | ． 509 | 26.78 | 848 | 32 | 81 |
| White Ash，．．．．．．．．．．．．． | ． 722 | 3450 | ． 547 | 28.78 | $88 \times$ | 31 | 77 |
| Scrub Oak． | ． 747 | 3339 | ． 392 | 2）． 63 | 774 | 38 | 73 |
| Witch Hazel | ．78t | 3505 | ． 868 | 19.36 | 750 | 39 | 72 |
| Applc＇Iree， | ． 697 | 3115 | ． 445 | $2 . .41$ | 779 | 33 | 70 |
| Red Oak， | ． 728 | 3255 | ．490） | 21.05 | 630 | $3{ }^{3}$ | 60 |
| B ack Gum， | ． 703 | 3142 | ． 400 | 21.05 | C96 | 83 | 67 |
| Black Walnut， | ． 681 | 31144 | ． 418 | 22.00 | $6 \times 7$ | 31 | 65 |
| White Beech， | ． 724 | 3233 | ． 518 | 27.26 | 635 | 2.3 | 65 |
| Black Birch， | ． 697 | ．3115 | ． 428 | 22.52 | 604 | 27 | 63 |
| Yellow Oak， | ． 653 | 2919 | ． 295 | 15.52 | 631 | 41 | 60 |
| Sugar Maple， | ． 644 | 2878 | ． 431 | 22.68 | 617 | 27 | 60 |
| Sassafras，．．． | ． 618 | 2762 | ． 427 | 22.47 | 624 | 28 | 59 |
| White Elm， | ． 58 ！） | 2592 | ． 337 | 18.79 | 611 | 34 | 58 |
| Holly，．．．． | ． 602 | 2691 | ． 374 | 19.68 | 613 | 31 | 57 |
| Wild Cherry， | ． 697 | 2668 | ． 411 | 21.63 | 5.9 | $\div 7$ | 55 |
| Yellow Pine，．．．．．．．．．．．． | ． 551 | 2163 | ． 333 | 17.52 | $5 \times 5$ | ：3 | 54 |
| Sycamore，or Buttonwond， | ． 535 | 2391 | ． 371 | 19.68 | 564 | 29 | 52 |
| Chestnut，．．．．．．．．．．．． | ． 522 | 2333 | ． 379 | 19.94 | 590 | 30 | 52 |
| Spanish Oa | ． 548 | 2449 | ． 362 | 19.05 | 562 | 30 | 52 |
| Poplar， | ． 563 | 2.516 | ． 383 | 20.15 | 549 | 27 | 52 |
| Butternut， | ． 567 | 2534 | ． 237 | 1247 | 527 | 42 | 51 |
| White Birch， | ． 530 | 2369 | ． 364 | 19.15 | 450 | 21 | 48 |
| Jersey Pine， | ． 478 | 2137 | ． 385 | 20.26 | 632 | 26 | 48 |
| Pitch Pine， | ． 426 | 11004 | ． 298 | 15． 158 | 510 | 33 | 4 |
| White Pine． | ． 418 | ；868 | ． 293 | 15.42 | 45.5 | 3＇） | 42 |
| Lombardy Poplar， | ． 397 | 1774 | ． 245 | 12.89 | 444 | 34 | 40 |

Note.-It will be remarked that shellbark hickory is made the standard in the aloove table, not only of the fuel but also of the specific gravity, the value and specific gravity of the other woods being determined by the proportion they severally bear to this standard. 'The table has a further use, namely, to determine the price that should be paid per cord for other woods, taking the price paid for shellbark hickory as the standard. For instance, should shellbark be selling for $\$ 6.00$ per cord, white oak is worth $\$ 4.86$; for, as 100 , the value of shellbark, : $\$ 6.00$, its price, $:: 81$, the value of white oak, : $\$ 4.86$, its price; and other kinds in the same proportion.
A cord of wood is 128 cubic feet; the sticks or billets are ent 4 feet long and piled 4 feet high and 4 feet wide; 8 feet in length making a cord.
The wood-cutter has a measure of two feet marked on his axe handle with which he measures the length of each stick, making due allowance for the carf, or the bevel of the cut. All fuel should, however, be sold by weight.
When the weights of different woods are equal, that which contains the most hydrogen will, during combustion, give out the greatest amount of heat. Hence, pine is preferable to oak, and bituminons to anthracite coal. When wood is used as fucl it should be thoroughly dried, as in its green and ordinary state it contains 25 per cent. of water; the heat to evaporate which is necessarily lost. To kiln-dry it adds 12 per cent. to its value over seasoned wood.

## FUEL.



Coal Mining in Pennsylvania
Table; showing the weights per culic foot of the different kinds of Coal.
Designation. Weight in lbs.
Anthracite, . . . . . . . . . . . . . . . 50 to 5.5
Bituminous, . . . . . . . . . . . . . 45 to 55
Designation.
Weight in lbs.

Cumberland, ................ . 53 Charcoal, (hard wood).......... $18 \frac{1}{2}$
Virginia, (bitum.).......... 49
do. (soft or pine wood)... 18
Note.-Soft coals are usually purchased at the rate of 28 bushels of 5 pecks each, to a ton of 43.56 cubic feet. Anthracite, 20 bushels to the ton

To prepare charcoal.
Charcoal is prepared by clearing off the top soil from a circular space of the required dimensions, and piling bil-
lets of wood in it into a pyramidal heap, with several spiraeles or flues formed through the pile. Chips and brushwood are put into those below, and the whole is so constructed as to kindle through in a very short time. It must then be eovered all over with clay or earth beaten elose, leaving openings at all the spiracles or flnes. The pile is then ignited, and carefully watched and kept from bursting into a flame, by instantly closing the flues should such happen. Whenever the white watery smoke issuing from the flnes is observed to be succeeded by a thin, blue, and transparent smoke, the holes must be immediately stopped; this being the indication that all the watery vapor is gone, and the burning of the true coaly matter commencing. Thus a strong red heat is raised throughout the whole mass, and all the volatile matters are dissipated by it, and nothing now remains but the charcoal. The holes being all stopped in succession'as this change of the smoke is observed, the fire goes out for want of air. The pile is now allowed to cool, which requires many days, for charcoal being a very bad conductor of heat, the pile long remains red hot in the centre, and if opened in this state would instantly burn with great fury. Even when it is opened, the beat retained by some of the larger pieces often ignites it, to guard against which water should be provided to instantly extinguish it when observed.

## PROPERTIES OF CHARCOAL.

Althongh charcoal is so combustible, it is, in some re-
spects, a very unchangeable substance, resisting the action of a great variety' of other substances upon it. Hence posts are often charred before being put into the ground. Grain lias been found in the excavations at Herculaneum, which was charred at the time of the destruction of that city, eighteen hundred years ago, and yet the shape is perfectly preserved, so that you can distinguish between the different kinds of grain. While charcoal is itself so unchangeable, it preserves other substances from change. Hence meat and vegetables are packed in charcoal for long voyages, and the water is kept in casks which are charred on the inside. Tainted meat can be made sweet by being covered with it. Foul and stagnant water can be deprived of its bad taste by being filtered through it. Charcoal is a great decolorizer. Ale and porter filtered through it are deprived of their color, and sugar-refiners decolorize their brown syrups by means of charcoal, and thus make white sugar. Animal charcoal, or bone-black, is the best for such purposes, although only one-tenth of it is really charcoal, the other nine-tenths being the mineral portion of the bone.

Charcoal will absorb, of some gases, from eighty to ninety times its own bulk. As every point of its surface is a point of attraction, it is supposed to account for the enormous accumulation of gases in the spaces of the charcoal. But this accounts for it only in part. There must be some peculiar power in the charcoal to change, in some way, the condition of a gas of which it absorbs ninety times its own bulk.-Hooker.

Notes.- The best quality of chareoal is made from oak, maple, beech, and chestnut.

Wood will furnish, when properly charred, abont 20 per cent. of coal.

A bushel of coal from hard wood weighs 30 lbs .
A bushel of coal from pine weighs 29 lbs .
$\mathrm{T}_{\text {ABLE }}$, showing the number of parts of charcoal afforded by 100 parts of different kinds of wood.

Woods.
Lignum Vitæ afforded. Parts charcoal. Color.

Mahogany
Laburnum
Chestnut
Oak
Black beech
Holly
Sycamore
Walnut
Beech
Maple
Norway Pine Elm
Sallow Ash Birch Scottish Pine
26.8 Grayish.
25.4 Brown.
24.5 Velvet black.
23.2 Glossy black. 22.6 Black. 21.4 Fine black. 19.9 Dull black. 19.7 Fine black. 20.6 Dull black. 19.9 Dull black. 19.9 Dull black. 19.2 Shining black. 19.2 Fine black. 18.4 Velvet black. 17.9 Shining black. 17.4 Velvet black. 16.4 Brownish.

## COKE.

Sixty bushels or Newcastle lump coal, will make 92 bushels of coke.

Sixty bushels of Newcastle slack, or fine coal, will make $85^{\circ}$ bushels of coke.

Sixty bushels Pictou or Virginia Coal, will made 75 bushels coke of an inferior quality compared with the above.
A bushcl of the best coke weighs 32 lbs.
The production of coke by weight is about $\frac{2}{3}$ that of coal.
Coal furnishes 60 to 70 per cent. of coke by weight.
1 lb . of coke will evaporate in a common locomotive boiler $7 \frac{1}{8} \mathrm{lbs}$. of water at $212^{\circ}$ into steam.
Table, showing the weights, evaporative powers per weight, bulk and character of Fuel.

| designation. |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Bituminous. |  |  |  |  |  |  |
| Cumberland max. | 1.313 | 52.92 | 10.7 | 573.3 | 2.13 | 42.3 |
| " $\quad \min$, | 1.387 | 54.29 | 0.44 | 632.3 | 4.53 | 41.2 |
| Blossburgh, | 1.3.4 | 53.05 | 9.72 | 522.6 | 3.40 | 42.2 |
| Midiothian screened, | 1.283 | 45.72 | 8.94 | 438.4 | 3.33 | 49. |
| " average, | 1.294 | 54.04 | 8.29 | 461.6 | 8.82 | 41.4 |
| Newcastle, . | 1.257 | 50.82 | 8.66 | 453.9 | 3.14 | 44 |
| l'ictou.. | 1.318 | 49.25 | 8.41 | 478.7 | 6.13 | 45. |
| Pittsburgh, | 1.252 | 46.81 | 8.20 | 384.1 | . 94 | 47.8 |
| Sydney, | 1.338 | 47.44 | 7.09 | 386.1 | 2.25 | 47.2 |
| liverponl. | 1.262 | 47.88 | 7.84 | 411.2 | 1.86 | 46.7 |
| Clover Hi'l. | 1.285 | 45.49 | 7.67 | 359.3 | 3.86 | 49.2 |
| Cannelton, Ia | 1.273 | 47.65 | 7.34 | 360. | 1.64 | 47. |
| Scotch, ................ | 1.510 | 51.09 | 6.05 | 369.1 | 5.63 | 48.8 |
| Anthracite. <br> Peach M untain, | 1.464 | 53.70 | '0.11 |  |  |  |
| Norest Improv ment, ... | 1.477 | 53.66 | 0.06 | 577.3 | 3.03 .81 | 41.6 41.7 |
| Leaver M eadows, No. 5,. | 1.554 | 56.19 | 9.88 | 572.9 | . 60 | 39.8 |
| Lackawanna........... | 1.421 | 48.80 | 9.79 | 493. | 1.24 | 45.8 |
| Beaver Meadows, No. 3,. | 1.617 | 54.93 | 9.21 | 526.5 | 1.01 | 40.7 |
| Lehigh,........ | 1.500 | 55.32 | 8.93 | 515.4 | 1.08 | 40.5 |
| Coke. <br> Natural Virginia,....... | 1.323 | 46.64 | 8.47 | 407.9 | 5.31 | 48.3 |
| Midlothian, |  | 32.70 | 8.63 | 282.5 | 10.51 | 68.5 |
| Cumberland, ........... <br> Wood. |  | 31.57 | 8.90 | 284. | 3.55 | 70.0 |
| Dry Pine wood, . . . . . . . |  | 20.01 | 4.69 | 98.6 |  | 106.6 |

N. B.-The abore are the extreme effects; for practical use let a deduction of $\frac{1}{8}$ be made from the above.

Combustible matter of fuel.
The quantity of combustible matter of fuel, if the weight and other circumstances be equal, may be learnt from the ashes, or residuum, left after the combustion. For example, good Newcastle coal contains a greater portion of combustible matter than Nova Scotia coal, and leaves behind a smaller amount of earthy and incombustible substance. The heating power, and consequent value, of different kinds of fuel, is affected by this circumstance, though by no means dependent on it. The fitness of fuel for various purposes is furthermore affected by the facility with which it gives off a part of its combustible matter in the form of vapor or gas, which, being burnt in that state, produces flame. For example, the bituminous coals abound in volatile matter, which, when ignited, supports a powerful blaze. Ou the other hand, the Lehigh and Rhode Island coals are destitute of bitumen, and jield but little flame. It is from similar canses that dry pine wood produces a powerful blaze, while its charcoal yields comparatively little. A blaze is of great service where heat is required to be applied to an extensive surface, as in reverberating furnaces, ovens, glass-houses, \&c. But when an equable, condensed, or lasting fire is wanted, the more solid fuels, which blaze less, are to be preferred.:

## Table, showing the heating power of different combustibles.

| Designation. | Lbs. of water heated $1^{\circ}$ by 1 lb . of substance. | Designation. | Lhbs. of water heated $1^{\circ}$ by 1 lb . of substance. |
| :---: | :---: | :---: | :---: |
| Alcohol. | . . . . . . . 11,000 | Coal, Newcastle. | 9,230 |
| Oiive Oil | . 14,500 | "Welsh. | 11,840 |
| Beeswax. | . 14,000 | " Anthracite. | 9,560 |
| Tallow | 15,000 | " Cannel | 9,010 |
| Oak, seaso | 4,600 | Coke. | 9,110 |
| " kiln-d | 5,960 | Peat. | 3,250 |
| Pine, seaso | б,466 |  |  |

## Table, showing the effects of heat upon certain bodies.

| Designation. | Tahrenkeit. | Designation. | Fahrenheit. |
| :---: | :---: | :---: | :---: |
| Gold melts. | $1983^{\circ}$ | Tin melts. | $421^{\circ}$ |
| Silver " | $1850{ }^{\circ}$ | Water boile. | $212^{\circ}$ |
| Copper | $2160^{\circ}$ | Alcohol " | $175^{\circ}$ |
| Brass | 19011 | Ether | $93^{\circ}$ |
| Iron, red hot in | 1074 ${ }^{\circ}$ | Heat of human blood. | $98^{\circ}$ |
| , | $884^{\circ}$ | Watcr freezes | $32^{\circ}$ |
| Common fire. | $790{ }^{\circ}$ | Strong wine freezes | $20^{\circ}$ |
| Zinc melts. | $740^{\circ}$ | Brandy : | $7{ }^{\circ}$ |
| Quicksilver boils | $630^{\circ}$ | Mercury ${ }^{\text {a }}$ | $-39^{\circ}$ |
| Linseed Oil * | $600^{\circ}$ | Greatest cold ever produced* | *. . $-220^{\circ}$ |
| Lead melts. | $694^{\circ}$ | Snow and salt, oqual parts. | $0^{\circ}$ |
| Bismuth melts | $476{ }^{\circ}$ | Acetous fermentation begins | . . $788^{\circ}$ |
| Tin and Bismuth melte | .. $283{ }^{\circ}$ | " ${ }_{\text {" }}$ " ${ }^{\text {Phosphorus burns.. . . . . . }}$. | $88^{\circ}$ |

Table, showing the relative value of the following fuels by weight.
Designation.
Valne.
Seasoned oak........................ 125

Oak, kiln-dried. . . . . . . . . . . . . . . . . . 140
Hickory 137
White pine 137
Yellow pine. . . . . . . . . . . . . . . . . . 145
Good Coke.
285

Designation. Value.
Charcoal.. . . . . . . . . . . . . . . . . . . . . . 285
Peat. . . . . . . . . . . . . . . . . . . . . . . 115
Welsh coal. . . . . . . . . . . . . . . 312
Neweastle "................. 309
Anthracite " ............ .... 250

* The lowest temperature hitherto attained, $-220^{\circ}$, is produced by ovaporating in vacuo a mixture of solid (condensed) protoxide of nitrogen, carbonic acid, and bisulphide of carbon.

Tabre, showing the number of gallons of water which may be lifted to various heights by the consumption of 112 lbs. of coal, the pumping apparatus being good, and adapted to the power of the steam engine.

| Height. | Gallons. | Height. |  | Gallons, |
| :---: | :---: | :---: | :---: | :---: |
| foot. | 1,600,000 | 9 | feet. | 177,777 |
| 2 | 810,000 | 10 |  | 160,000 |
| , | 533,233 | 11 | " | 140,454 |
| 4 " | 400,010 | 12 | " | . 133,333 |
| 5 | 320,000 | 13 | $\because$ | 123,076 |
| 6 | 265,646 | 14 | " | 114,444 |
| 7 | 228,571 | 15 | " | 106,666 |
| $8 *$ | 200,000 | 16 | " | 100,000 |

Notes.-The evaporative power of 1 lb . of bituminous coal applied to a stean boiler, is from 6 to 9 lbs. fresh water in the boiler, under a pressure of 30 lbs . to the square inch, evaporated into steam. Cumberland coal being the strongest, and Scotch coal the weakest.

The evaporative power of anthracite coal, aided by a blast, is from $7 \frac{1}{2}$ to $9 \frac{1}{2}$ lbs. of fresh water evaporated into steam for 1 lb . of coal.

In practical evaporating power $2 \frac{1}{2}$ to $2 \frac{3}{4}$ lbs. of wood is equivalent to 1 lb . of bituminous or antluracite coal.

One cord of the ordinary seasoned fire-wood is equal in evaporating power to 12 bushels ( 960 lbs .) of Pittsburgh coal.

One ton of Cumberland coal is equal in evaporating power to $1 \frac{1}{4}$ tons of anthracite coal, and equal to 2.12 cords of dry pine wood.

One ton of antluracite coal is equål to $1 \frac{3}{4}$ cords of dry pine wood.

Each cubic foot of water evaporated in a boiler at the
pressure of the atmosphere, will heat 2,000 cubic feet of inclosed air to an average temperatnre of $75^{\circ}$.

Each square foot of surface steam-pipe will warm 200 cubic feet of space.

One pound of anthracite coal in a cupola furnace will melt 5 to 10 lbs. of cast iron. -

80 bushels of bituminous coal in an air furnace will melt 10 tons of cast iron.

Small or fine coal produces about $\frac{3}{4}$ the effect of large coal of the same kind.
Table, showing the price of parts of a cord of wood, at certain rates per cord.

| FEET | \$1. 0 | \$1.75 | \$2.00 | \$3.25 | \$2.50 | \$2.75 | \$3.0J | \$3.25 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 001 | 001 | 001 | 002 | 002 | 002 | 002 | 00 ? |
| 2 | 002 | 002 | 003 | 003 | 004 | 004 | 005 | 005 |
| 3 | 003 | 004 | 004 | 005 | 006 | 006 | 007 | 007 |
| 4 | 005 | 006 | 006 | 067 | 008 | 009 | 009 | 010 |
| 5 | 006 | 007 | 008 | 009 | 010 | 011 | 012 | 013 |
| 6 | 0 (17 | 008 | 000 | 011 | 012 | 013 | 014 | 015 |
| 7 | 008 | 010 | 011 | 012 | 014 | 015 | 016 | 017 |
| 8 | 01.9 | 011 | 012 | 014 | 016 | 018 | 019 | 020 |
| 16 | 019 | 022 | 025 | $0: 8$ | 031 | 035 | 037 | 0.40 |
| 24 | 028 | 033 | 037 | 042 | 047 | 052 | 056 | 061 |
| 32 | 038 | 044 | 050 | 056 | $0 \mathrm{C3}$ | 069 | 075 | 081 |
| 40 | 047 | 055 | 063 | 070 | 078 | 086 | 094 | 102 |
| 48 | 056 | 066 | 075 | 084 | 094 | 103 | 112 | 122 |
| 56 | 061 | 077 | 088 | 098 | 109 | 120 | 131 | 142 |
| 64 | 075 | 083 | 100 | 113 | 125 | 138 | 150 | 102 |
| 72 | U 84 | 098 | 113 | 127 | 141 | 155 | 169 | 183 |
| 80 | 094 | 109 | 125 | 141 | 156 | 172 | 188 | 203 |
| 84 | 098 | 115 | 131 | 148 | 164 | 181 | 197 | 213 |
| 88 | 103 | 120 | 138 | 155 | 172 | 189 | 206 | 223 |
| 92 | 109 | 126 | 144 | 162 | 180 | 198 | 215 | 233 |
| 96 | 113 | 131 | 150 | 169 | 188 | 206 | 225 | 241 |
| 104 | 122 | 142 | 163 | 183 | 203 | 223 | 244 | 204 |
| 112 | 131 | 153 | 175 | 197 | 219 | 241 | 202 | 284 |
| 120 | 141 | 164 | 188 | 211 | 234 | 258 | 281 | 30.5 |
| 128 | 150 | 175 | 200 | 225 | 250 | 275 | 300 | 325 |

Explanation.-Find the number of feet in the left-hand column of the table; then the price at the top of the page, and trace the line and column until they meet, and you will find the amount in dollars and cents.

Example.-If a load of wood contains 98 feet, at two dollars and a half per cord-first find the amount of 96 feet, which is $\$ 1.88$; and then add the valuc of 2 feet ( 4 cents), making $\$ 1.92$. So of all similar examples.

Should the price per cord exceed the amount in the preceding table, the price of the parts may be found by adding or doubling, as per example, for $\$ 3.50$ double $\$ 1.75$; for $\$ 3.75$ add $\$ 2.00$ and $\$ 1.75$; for $\$ 4.00$ double $\$ 2.00$; for $\$ 5.00$ double $\$ 2.50, \& c$.


## FENCES.



- In the newer portions of the country, where land is cheap and timber abundant, the old-fashioned zig-zag, or "Virginia worm fence," still prevails. It does not cost one-third the amonnt required for good post or board fence. Some are constructed altogether of rails, without any bracing or support at the corners, and are, of course, easily thrown down by cattle and the wind. They are, however, usually braced in one of the following modes:

1. By stakes and riders-either single or double riders.
2. By upright stakes, opposite each other, and placed in the obtuse corners, driven into the ground, and tied at the top by a wire or withe.
3. By upright stakes placed in the acute corners, driven into the ground, and tied at the top as above described.
4. By wedging one end of a rail into the acute corner, and letting the other end rest on the ground.
5. By placing the riders, or long poles, in a straight line on the top and at the centre of the fence, and then placing upright stakes in each inner corner, between the rider and the fence, the lower end resting on the ground and the other wedged tightly between the top and the rider.
The rails for this species of fence are cut different lengths in different sections of the country, and, indeed, in the same section. Much depends upon the nature of the timber, and mueh also on the kind of ground on which the fence is to be laid. Some are cut 12 feet, some 14 , and some even $16 \frac{3}{2}$ feet or 1 rod in length. The usual lengths, however, are 12 and 14 feet.
The rails are laid at different angles; some deflecting 6 feet, some 7 , and some 8 feet from a right line. The more they deflect, or in other words, the crookeder they are laid, the firmer the fence will be; but more rails will be required and more space occupied. The deflection for a 12 foot rail is usually 6 feet; for a 14 foot rail, 7 feet; and for a rod rail, 8 feet. A foot is generally allowed at each end for the lap.

Some fences are built 5 rails high, some 6, and some 7the rider making an additional rail high. The height, as well as the spaces between the rails, are mostly regulated by statute in the different States. The majority of these statutes require the fence to be not less than 5 feet high, with interspaces between the rails of not more than 4 inches, to a height of 4 feet.

The number of rails, stakes, and riders required to build a certain amount of fence has hitherto been pretty much gnesswork; and often the farmer, before he can finish his fence, has to quit it, and go and split more rails, or gear up and haul a few more loads. It is hoped that the following tables will obviate that necessity, by enabling him to tell within a few rails how many will be required to build a given amount of fence.
$\mathrm{T}_{\text {able, }}$ showing the number of rails, stakes, and riders required for each 10 rods of fence.

| Length of rail. | Deflec. <br> tion from <br> $\underset{\text { Feet. }}{ }$ | Length of panel <br> Feet | $\left\lvert\, \begin{gathered} \text { Oumber } 1 \\ \text { or papers } \\ \hline \text { Feet } \end{gathered}\right.$ | Number of raila for each 10 rods. |  |  | Number of stakes. | Number of ricers, (slagle.) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Feet. |  |  |  | arails high. | io ralia high. ${ }^{\text {a }}$ | 7 rails histo. |  |  |
| 11 | 6 | 8 | 214 | 11.3 | 123 | $14 t$ | 43 | 21 |
| 14 | 7 | 10 | $16 \frac{1}{2}$ | 83 | 99 | 116 | 31 | 17 |
| $16 \frac{1}{2}$ | 8 | 12 | 1:3 | 69 | 84 | 95 | 28 | 14 |

Note.-Should the number of rods exceed 10, the requisite number of rails, stakes, and riders can be found by multiplying. For instance, should the length of fence be 100 rods, multiply the above number by 10 ; should it be 75 rods, multiply the above number by $7 \frac{1}{2}$; for 77 rods, multiply by $7 \frac{7}{10}$, and so forth.

Post and rail fence.
Post and rail is a more costly fence, but much better, and in the end more economical. There is not such a waste of either timber or land.

The rails are also cut of different lengths; some 10, some 12 , some 14 , and some $16 \frac{1}{2}$ feet, or 1 rod. Formerly, about 6 inches at each end were allowed for the lap, but more recently a foot has been allowed, as the longer the lap the stronger and firmer the fence. They are from 5 to 8 rails ligh ; posts set in the ground from 2 to 3 feet.
$\mathrm{T}_{\text {able, }}$ showing the number of rails and posts required for each 10 rods of post and rail.fence.

| Length of rail-leet. | Lencth of panel-feet | Number of | Number of posts. | $\lambda$ dumer cer rails forcach $1 . J$ roda. |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | jrails high | 6 rails high. 7 | 7 raila high | 8rails high, |
| 10 | 8 | 205 | 21 | 1 ( 3 | 123 | 144 | 165 |
| 12 | 10 | 16\% | 17 | 83 | 99 | 116 | 133 |
| 14 | 12 | 13年 | 14 | 69 | 84 | 95 | 109 |
| $1 \mathrm{C} \frac{1}{3}$ | 147 | 113 | 12 | f. 7 | 69 | \&1 | 93 |

Note.-Should the length exceed 10 rods, the additional number of posts and rails may be found by multiplying, as directed in the note to the preceding table.

Post and board fence.
Where timber is plenty and saw-mills abound, or where lumber is cheap, post and board fence is economical.

The boards are usually sawed 16 feet long, and the posts set 8 feet apart, 3 feet in the ground.

The fence is usually 5 boards high; the bottom. or first. board 10 inches wide; the second 8 , the third 6 , and the
fourth and fifth 5 inches wide. They may be wider or narrower, as cost, taste, or use may dietate.

The first, third, and fifth boards are joined on one post, and the second and fourth joined on the next post.

To find the number of feet of boards required for each rod of post and board fence.

Rule.-Add the different widths of the boards, in inches, together, and divide the sum by 12 for the width in feet; then multiply the width by $16 \frac{1}{2}$, and the product will be the number of feet, board measure, required for each rod of fence.

Example.-Required, the number of feet, board measure, for each rod of fence, 5 boards high, the various widths of the boards being $10,8,7,6$ and 5 inches?

Solution. $-10+8+7+6+5=36 \div 12=3 \mathrm{ft} . \times 16 \frac{1}{2}=49 \frac{1}{2}$ feet. Ans.

To find the number of posts required for a given length of post and board fence.

Rule.-Reduce the number of rods to feet by multiplying by $16 \frac{1}{2}$, and divide the product by the number of feet the posts are set apart ; the quotient will be the number of posts required.

Example.-Required, the number of posts for a post and board fence 160 rods long; posts set 8 feet apart?

Solution. $-160 \times 16 \frac{1}{2}=2640 \div 8=330$. Ans.

## HEDGE PLANTS.

The following, for the cultivation of hedges, is the condensed experience of the most suecessful and practical hedgegrowers in the United States, and especially in the West.
Directions for Setting.-During the summer or fall thoroughly manure, plough as deep as possible a strip from five to eight feet wide, leave a dead furrow in the line where the hedge is to be set. In the following spring back furrow to the hedge-line, then harrow down smooth. Stake the ground, and by means of a line make a plain mark, then with a spade placed at right angles across, the mark, push the blade in the soil to its full length at an angle of about forty-five degrees. Let an assistant place the plants under the back of the spade on the line of the mark, about one inch below the depth they stood in the nursery, and about eight inches apart. Pack the ground firmly around the plants, and mulch the ground to keep moist. Cultivate until the first of August. Before frost in the fall, back furrow and cover with coarse manure or straw, and in the spring uncover and cultivate as before. Replace all missing or feeble plants with strong ones.

Trimming. - The hedge should not be trimmed until three years old, when one-half or two-thirds should be cut
nearly off close to the ground and laid down at an angle of thirty degrees from the ground. Trim once a year in July, and do not allow the hedge to exceed twenty inches broad. The fourth year in the spring, before the buds start, take off about one-half the last year's growth. Leave the lower brauches a little longer than the top, and ain to give the hedge some regular uniform shape. The hedge shonld be allowed to gain from eight to twelve inches annually, until it has reached the desired height.

To Preserve Plants during the Winter.--Cut a trench in a dry piece of gronnd at an angle of forty-five degrees, place the bundles in the trench, and eover with dirt from a new trench from six to eight inches in front, and so continue until all are trenched. Cover the plants two inches deep, firmly packing the gromnd around them. After the ground is frozen two inches deep, cover the whole with straw from twelve to eighteen inches; after which cover the whole bed with dirt about a foot thick. Encircle with a diteh so that no water can reach the plants. Plants can also be kept in a cellar, well covered in sand, but be careful not to expose to the sun or dry wind, in setting in the spring.

Setting Eivergreens.-Cultivate and set as before, but the ground should not be manured within six months of setting the plants: Chip-dirt or rotten leaves are preferable for a mulch.

Iredge Plants.—Osage Orange.-The Osage Orange 'stands at the head of the list of hedge plants. It is much
planted where fencing timber is scaree, in the latitude of the Middle and Southern States. It is hardy and grows vigoronsly, and its thorns are absolute proof against the depredations of domestic animals, and even boys retreat from contact with them. It makes a beantiful hedge when properly pruned, but when negleeted it gets beyond all control. In the Northern and Eastern States, it is liable to be killed by the frast.

Honey Locust.-This thorny, vigorons, and hardy plant has no superior as a farm hedge. It requires two annual prunings, in June and September, to keep it within control. It flourishes as far north is Canada, and for the Middle and Southern States it yields only to the Osage Orange. It is easily propagated by setting the plants abont six inches apart. Soine prefer sowing the seed on the line of the proposed hedge.

Buckthorn.-This plant is a native of America, and would be one of the best hedge plants did it not lack a supply of thorns.

Privit.—This thornless shrub is easily propagated from cuttings, and thickens well when set in a hedge. Its foliage is rich, and in the spring it is decorated with an abundance of beantiful small white flowers. It cannot be suceessfully cultivated north of the latitude of Philadelphia.

Hawthorn.-The hawthorn, so common in England, does not thrive so well in our climate.

Evergreen Hedges.-Norway Sprucc.-A hedge of this beautiful tree should be set about four or five inches apart, and the plants not over four feet high. The side branches should be proned, and the leaders cut out. Afterwards it slould be trinmed the same as other hedges. The soil should be kept rich to insure a vigorous growth.

Arbor Vitce.--In consequence of the cheapness of the common Arbor Vitæ, for an ornamental hedge, it has superseded all others. Though inferior to the Siberian species, yet it will be a long time before it will yield its place to it. Being hardy and snre to flourish under ordinary treatment, it is a valuable hedge plant.

Hemlock.--The hemlock, when properly pruned, makes a thick and beautiful hedge. With a foliage ever of the richest green, and adapted to all the northern latitudes, as a hedge plant it las no superior if an equal. Although hardy, it is somewhat difficult to transplant. Select a rainy day when the gromd is wet, being careful not to expose the roots to the light or air. As soon as planted mulch with coarse manure or chip-dirt.


## - WIRE FENCES.

Wire fences have this advantage over hedges and other fences: they take up but little space, with no exhaustion of the soil, are not blown about by the wind; are durable, economical, and make a good protection against cattle, sheep, and other animals. For enclosing lawns and gardens, many of the designs offered in market are very desirable and ornamental. For a farm fence, such as any farmer can put up, annealed wire of the size No. 6 or $8^{*}$ is preferable; for the protection of cattle five wires are sufficient; for sheep and lambs, seven should be used.

In building the fence a post six inches square or larger should be set at each end, and securely braced, from which to stretch the wire; the intervening posts should be set from eiglit to ten feet apart. Through these holes should be bored with a $\frac{1}{4}$-inch brace-bit, and at appropriate distances apart, according to the protection required. Instead of putting the wires through the posts, they are often fastened by means of staples made of the same material. In putting up the wires they should be stretched as tightly as possible, care being taken in splicing that they be well secured, which can be best done by means of narrow blacksmith's tongs.

Suitable wire can be bought for 8 or 10 cents per pound, making a fence of six wires cost about 40 cents per rod; this does not include posts and labor of setting.

[^0]
## HUMAN STRENGTH.

The force of a single man, unaided by machinery, and working to the best advantage, is equivalent to the raising of 70 lbs .1 foot per second for ten hours in a day.
The maximum power of a strong man, exerted for $2 \frac{1}{2}$ minntes, is eqnivalent to $18,000 \mathrm{lbs}$. raised one foot in a minute.
A man of ordinary strength exerts a force of 30 lbs . for 10 hours in a day with a velocity of $2 \frac{1}{2}$ feet in a second, which is about equal to 4500 lbs . raised 1 foot in a minute.
The average weight of men is 150 lbs . each.
A man travels, without a load, on level ground, for $8 \frac{1}{2}$ hours a day, at the rate of $3 \frac{7}{10}$ miles an hour, or $3 \frac{1}{4}$ miles per day. He can carry 111 lbs. 11 miles in a day.
A porter going short distances, and returning unloaded, carries 135 lbs. 7 niles in a day. He can carry, in a wheelbarrow, 150 lbs. 10 miles a day.
An average strong man will, for a short period, exert a force with a-

|  |  | lbs. |  |  | lb |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Drawing knife. |  | 100 | Pincers, compression. . . . .equal to 60 |  |  |
| An auger, both hands. | * | 100 | A hand-plare | 4 | 50 |
| A screw-driver, ] hand. | ${ }^{1}$ | 84 | A hand-saw | 4 | 36 |
| A bench-vice handle. | 4 | 72 | A thumb-vice | " | 45 |
| A chisel, vertical pressure | 4 | 72 | A brace-bit, re |  | 16 |
| A windlass. ........... | 4 | 60 |  |  |  |

## HORSE POWER.

Before the invention and improvement of the steam-engine, the force of horses was very extensively used as a motive power ; and although its application to machinery is now much less frequent, it is still resorted to, especially in places where fuel is expensive. For ordinary farm labor, it will probably never be superseded. The following are some of the more important facts relating to the horse and horse-power:-

The ordinary work of a horse is taken at 22,500 lbs. raised 1 foot in a minute, for 8 hours a day.

The strength of a horse is equivalent to that of 5 men.
A draught-horse can draw 1600 lbs. 23 miles a day on a level road, weight of carriage included.

In a horse-mill, he moves at the rate of 3 feet per second on a track 25 feet diameter, and with the machine exerts the power of $4 \frac{1}{2}$ horses.

He occupies irr a stall a front of $4 \frac{1}{2}$ feet and a depth of 10 feet.

The average weight of horses is 1000 lbs. each.
A horse travels 400 yards, at a walk, in $4 \frac{1}{2}$ minutes; 400 yards, at a trot, in 2 minutes; and 400 yards, at a gallop, in 1 minute.

A horse will carry 250 lbs 25 miles a day of 8 hours.


A horse will live 25 days without solid food, merely drinking water. He will live 17 days without either eating or drinking. He will live only 5 days when eating solid food, without drinking.

He attains his full growth in 5 years, and will live 25. His average life is 16 years.

Horse-power as applied to the measurement of steam-engines and waterfalls was first applied by James Watt, the inventor of the steam-engine. From a series of experiments he ascertained that the average strength of a horse was sufficient to raise $33,000 \mathrm{lbs}$. one foot per minute,* and this unit has been adopted in this country and in England as a general measure of power.

A waterfall is thus said to have a horse-power for every $33,000 \mathrm{lbs}$. of water passing a given point per minute for each foot of the fall. To compute the power of a waterfall is given the following

Rule.-Divide the continued product of the width, the depth, the velocity of the water per minute, the lieight of the fall, and the weight of a cubic foot of water ( $62 \frac{1}{2} \mathrm{lbs}$.) by 33,000 .

Example.-The flume of a mill is 10 feet wide, the water is 3 feet deep, the velocity is 100 feet per minute, and the fall 11 feet. What is the horse-power of the fall?

Operation.- $\left(10 \times 3 \times 100 \times 11 \times 62 \frac{1}{2}\right) \div 33,000=62 \frac{1}{2}$ horse-power.

* This is done by means of compound pulleys.

The power of a steam-engine is estimated by the following
Rule.-Divide the continued product of the area of the piston in inches, the mean pressure per square inch in pounds, the length of the stroke in feet, and the number of strokes per minnte by 33,000 .

Example.-The area of the piston of a steam-engine is 40 inehes, the pressure is 60 lbs . per square inch, the length of the stroke is 3 feet, and it makes 30 strokes per minute. What is the horse-power?

Operation.- $(40 \times 60 \times 3 \times 30) \div 33,000=6 \frac{1}{2}$ horse-power (nearly).

Water-wheels lose from 10 to 50 per cent. of the power, and the actual power of the steam-engine is less than that indicated by the horse-power, owing to a loss by friction, the amount of whieh depends upon the arrangement of the engine and the perfection of the workmanship.

Table, showing the labor one lorse is able to perform at different rates of speed on canals, railroads, and turnpikes. Drawing force, $83 \frac{1}{3} \mathrm{lbs}$.

| Speed per hour. silfes. | $\left\|\begin{array}{c} \text { Duration of day'ra } \\ \text { work-hiure! } \end{array}\right\|$ | Ueeful elteet for 1 day in tons, drawn 1 milc. |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  | oo cansi-tona | Oa a rallioad-toas. | Oa a turapita-tons. |
| $2 \frac{1}{2}$ | $11 \frac{1}{2}$ | 520 | 115 | 14 |
| 3 | 8 | 243 | 92 | 12 |
| 31 | 6 | 154 | 82 | 10 |
| 4 | 42 | 102 | 72 | 9 |
| 5 | 2 C | 52 | 57 | 7.3 |
| 6 | 2 | 30 | 48 | 6 |
| 7 | 14 | 19 | 41 | 5 |
| 8 | $1{ }_{6}$ | 12.8 | 36 | 4.5 |
| 9 | ${ }^{9}$ | 9. | 32 | 4. |
| 10 | $\frac{3}{4}$ | 6.5 | 28.8 | 3.6 |



Table, showing how much one team and plough will perform in a day, in acres and tenths.

| Width of furrow la inches. | Acres and tenths. | Whath or fur aw in inches. | Acres and tenthg. | $\begin{gathered} \text { Width of } \\ \text { furraw in } \\ \text { fees } \end{gathered}$ | Acres nnd teaths. | Willth of furraw in faet. | Acres and teathe. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 5 | 1.0 | 12 | 2.4 | 2 | 48 | $6 \frac{1}{2}$ | 13.2 |
| 6 | 1.2 | 14 | 2.8 | $2 \frac{1}{2}$ | 6.0 | 6 | 14.4 |
| 7 | 1.4 | 16 | 3.2 | $3 \times$ | 7.2 | $0 \frac{1}{2}$ | 15.6 |
| 8 | 1.6 | 18 | 3.6 | 31 | 84 | 7 | 16.8 |
| 9 | 1.8 | 21 | 4.0 | 4 | 9.6 | $7 \frac{1}{2}$ | 18.0 |
| 10 | 2.0 | 22 | 4.4 | $4 \frac{1}{2}$ | 10.8 | 8 | 19.2 |
| 11 | 2.2 |  |  | 5 | 12. 0 |  |  |

Note.-The above table is constructed on the presumption that the team moves at the rate of about 3 feet per second, or 2 miles per hour, for 10 hours per day. Horses ${ }^{1}$ and mules in good condition will do this

## FREIGHTS-QUANTITY OF GOODS WHICH COMPOSE A TON IN SHIPPING.



Wharf Scene in New York.
From By-laws of the New Yorl Chamber of Conmerce.
Resolved, That when vessels are freighted by the ton, and no special agreement is made between the owner of the vessel and freighter of the goods, respecting the proportion of tonnage which each particular article shall be computed at, the following regulation shall be the standard of compu-tation:-

That the articles, the bulk of which shall compose a ton, to equal a ton of heavy materials, shall be in weight as follows: 1568 lbs . of coffee in casks, 1830 lbs . in bags ; 1120 lbs. of cocoa in casks, 1307 lbs. in bags.

952 lbs. pimento in casks, 1110 in bags.
Eight barrels of flour, 196 lbs. each.
Six barrels of beef, pork, tallow, pickled fish, pitch, tar, and turpentine.

Twenty hundred pounds of pig and bar iron, potashes, sugar, logwood, fustic, Nicaragua wood, and all heavy dyewoods, rice, honey, copper ore, and all other heavy goods.

Sixteen hundred pounds of coffee, cocoa, and dried codfish, in bulk, and twelve hundred pounds of dried codfish in casks of any size.

Six hundred pounds of ship bread in casks, seven hundred in bags, and eight hundred in bulk.

Two hundred gallons (wine-measure), reckoning the full contents of the casks, oil, wine, brandy, or any kind of liquors.

Twenty-two bushels of grain, peas, or beans, in casks.
Thirty-six bushels of grain in bulk.
Thirty-six bushels of European salt.
Thirty-one bushels of salt from the West Indies.
Twenty-nine bushels of sea-coal.
Forty feet (cubic measure) of mahogany, square timber,

## 144

 FREIGHTS.oak plank, pine, and other boards, beavers, furs, peltry, bees wax, cotton, wool, and bale goods of all kinds.

One hogshead of tobacco, and ten hundred pounds of dry hides.

Eight hundred pounds of China raw silk, ten hundred pounds of net bohea, and 800 green tea.


## UNITED STATES OR FEDERAL MONEY.



Stamping Coin at the United States Mint
Money is value, or the representative of valne, used for the purposes of exchange. In different countries, at different times, various articles have been used for money, such as oxen, pieces of leather stamped, shells, wampum, iron, nails, \&c. Gold and silver, at present, are used almost exclusively for money. They are called precious metals.
Paper money is a substitute for coin.
Uncoined gold and silver is called bullion.
Coin is a piece of metal of known weight used for money, the value of which is stamped on it.

Currency is the money of circulation.
Tokens are coins whose intrinsic value is below that assigned them by law. Snch coins are said to be coins in billion.

United States or Federal money is a decimal currency.

$$
\text { Table. }^{\text {ren }}
$$

10 mills (m.) 1 cent ct.
10 cents 1 dime d. 100 mills.
10 dimes 1 dollar $\$ 1000$ " 100 cents. 10 dollars 1 eagle E. 10000 " 1000 cents 100 dimes.

Corss.-The gold coins are the double-eagle, eagle, halfeagle, quarter-eagle, three-dollar piece, and dollar.


Notes.-1. The fifty-dollar piece is not a legal coin. The
copper half-cent is no longer coined. The mill is not a coin.
2. Gold coins contain 9 parts of gold and 1 part of an alloy of silver and copper.
3. The silver coins are the dollar, half-dollar, quarterdollar, lime, half-dime, and three-cent piece.

4. Silver coins contain 9 parts silver and 1 part copper, except the three-cent piece, which is 3 parts silver and 1 part copper.
5. The nickel coins are the cent, the new three-cent, and new five-cent pieces.
6. The nickel cent contains 88 parts copper and 12 parts nickel.
7. The copper coins are the cent and two-cent pieces.

8. The two-cent and cent pieces are made of nickel and copper.
1 The term dollar is supposed to be derived from the German "thaler," pronounced ta-ler.

The term dime means ten, cent a hundred, and mill a thousand.

The origin of the dollar-mark is uncertain'; some think it the combination of U.S., others that it is an imitation of . the dollars and scroll on the "pillar-dollar."

> 1 eagle (gold) weighs 258 troy grains. 1 dollar (silver) " 1 dent (copper) ${ }^{4} 12.5 \quad 168 \quad$ " $\quad$ "

Gold coin of the United States, prior to 1834, like that of England, $=88.8$ cents per dwt. By act of Congress of 1834 , its value was made 94.8 cents per dwt. The old United States Eagle, coined previous to 1834, is worth $\$ 10.66$.

## ENGLISH MONEY.

English or Sterling Money is the currency of Great Britain.

Table.
4 farthings (far. or qr.) make 1 penny, marked d.

12 pence
20 shillings 21 shillings
" 1 shilling,
" 1 pound or sovereign, $£$, sov.
" 1 guinea, marked guin.

- Corns.-The gold coins are the sovereign (£1), and the half-sovereign (10s.).


The silver coins are the crown (5s.), the half-crown (2s. 6d.), the florin (2s.), the shilling (12d.), sixpenny-piece (6d.), and threepenny-piece (3d.).


The bronze coins are the penny, half-penny, and farthing. Farthings are generally written as fractions of a penny, thus: 1 far. $=\frac{1}{4} \mathrm{~d}$.; 2 far. $=\frac{2}{4}$ or $\frac{1}{2} ; 3$ far. $=\frac{3}{4}$.


Canadian currency is decimal, and the denominations are the same as Federal money.
The franc is' the unit of the French decimal currency,
and is worth $\$ 0.186$. The denominations are francs and centimes.


Notes.-1. The symbol $£$ stands for the Latin word libra, a pound; s. for solidus, a shilling; d, for denarius, a penny; $q r$. for quadrans, a quarter.
2. The term sterling is supposed to be derived from Easterling, a name formerly given to the early German traders.
3. The term farthing is derived from "four things," denoting the divisions on the old English penny.

## AVOIRDUPOIS WEIGHT.



Avoirdupois weight is used for all ordinary purposes.

| Table. |  |  |  |
| :---: | :--- | :---: | :---: |
| 16 drams (dr.) | 1 ounce, | marked oz. |  |
| 16 oz. | 1 pound, | " | lb. |
| 25 lb. | 1 quarter, | " | qr. |
| 4 qr. | 1 hundredweight, | " | cwt. |
| 20 cwt. | 1 ton, | " | T. |
| 100 lb. | 1 cental, | " | c. |


| т. owt. qr. lb. | 1b. oz. dr. gr. |
| :---: | :---: |
| $1=20=80=2000$ | $1=16=256=7000$ |
| $1=4=100$ | $1=16=437_{\text {\% }}$ |
| $1=25$ | $1=27 \frac{11}{32}$ |

Notes.-1. The gross ton of 2240 lbs . was formerly in common use, but is now seldom used except at the United States Custom House and at the Pennsylvania coal mines.
2. Butter is usually packed for market in pails or firkins, which hold from 50 to 100 pounds.
3. The term avoirdupois is derived from the French " avoir du poids," meaning goods of weight. Owt. is formed fromi c., centum, wt., weight.
4. Most of the States have adopted the following

## Table of Miscellaneous Weights.

| 196 lbs. | make 1 barrel of flour. |  |  |
| :---: | :---: | :---: | :---: |
| 200 " | " 1 | 1 " | beef, pork, or fish. |
| 280 " | " 1 | 1 " | salt at N. Y. Salt |
| 32 " | " | 1 bushe | oats. |
| 48 " | " 1 | 1 " | barley. |
| 56 " | " 1 | 1 " | corn or rye. |
| 60 " | " | 1 " | wheat. |
| 60 " | " 1 | 1 " | beans. |
| 14 " | " 1 | 1 " | blue-grass-seed. |
| 46 " | " 1 | 1 " | castor-beans. |
| 60 " | " 1 | 1 " | clover-seed. |
| 56 " | " 1 | 1 " | flax-seed. |
| 44 " | " 1 | 1 " | hemp-seed. |

[^1]60 lbs . make 1 bushel of peas.

| 60 | " 1 " | potatoes. |
| :---: | :---: | :---: |
| 45 " | 1 | timothy-seed. |
| 57 " | 1 | onions. |
| 28 " | " 1 | apples or peaches (dried). |
| 50 " | " 1 " | salt. |

A sack of wool is 22 stone, that is, 14 lbs. to the stone, 308 lbs.

A pack of wool is 17 stone $2 \mathrm{lbs} .=240 \mathrm{lbs}$.-a pack load for a horse.

A truss of hay is, new, 60 lbs.; old, 50 lbs.; straw, 40 lbs. A load of hay is 36 trusses. A bale of hay is 300 lbs . A firkin of butter was formerly 56 lbs.
A bale of cotton is 400 lbs ., but it is put up in different States varying from 280 to 720 lbs . Sea Island cotton is put up in sacks of 300 lbs .

## Avoirdupois Weight Illdstrated.




I barrel


1 bushel.


## TROY WEIGHT.



Troy weight is used in weighing gold, silver, and jewels, and in philosophical experiments.

Table.
24 grains (gr.) make 1 pennyweight, marked pwt. 20 pwt .
12 oz.
31 grains
" 1 ounce
" 1 pound,
" 1 carat (diamond wt.)" k .
Scale of Compartson.

| 101 | $12={ }^{\text {oz. }}$ diwt. |  | $\begin{gathered} \mathrm{gr.} \\ =5760 \end{gathered}$ |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |
|  | $1=$ | 20 | $=$ | 480 |
|  |  | 1 | = | 24 |
|  |  | 1 k . | = | $3 \frac{1}{5}$ |

Notes.-1. A carat is a weight of about 3.2 grains, and is used by jewellers to weigh diamonds. The term carat is also used to denote the fineness of gold. When gold contains 18 parts pure gold and 6 parts alloy, which is usually silver and copper, it is said to be 18 carats fine. Gold 14 carats fine contains 14 parts pare gold and 10 parts alloy, \&c.
2. The term Troy is derived from Troyes, where the weight was first introduced into Europe, about the 12th century.
3. The term pennyweight is derived from the weight of the old silver penny. The term grain is derived from the custom of using the grains of wheat, 24 of which were taken to determine the weight of a pennyweight.
4. The symbol $o z$. is derived from the Spanish word onza, an ounce; lb. is from the Latin libra, a pound.
5. The standard unit of weight is the troy pound. It equals the weight of $22.79+\mathrm{cu} . \mathrm{in}$. of distilled water at the temperature of $39^{\circ} 83^{\prime} \mathrm{F}$., the barometer being at 30 in .

## APOTHECARIES' WEIGHT.



Apothecaries' weight is used in preparing prescriptions, but drugs and medicines are bought and sold by avoirdupois weight.

## Table.

| 20 grains (gr.) | 1 scruple, | marked sc. or | Э. |  |
| :---: | :--- | :---: | :---: | :---: |
| 3 scruples | 1 drachm, | $"$ | dr. or 3. |  |
| 8 drachms | 1 ounce, | $"$ | oz. or | 3. |
| 12 ounces | 1 pound, | $"$ | lb. or | Hb. |

Scale of Comparison.
开 $\quad 3 \quad 3 \quad 9 \quad$ gr.
$1=12=96=288=5760$
$1=8=24=480$
$1=3=60$
$1=20$


## APOTHECARIES' FLUID MEASURE.

Apothecaries' fluid measure is used for measuring liquids in preparing medical prescriptions.

Table.

| 60 minims ( $\pi$ ) | 1 fluid drachm, | marked $f 3$. |  |
| :---: | :--- | :---: | :--- |
| 8 fluid drachms | 1 fluid ounce, | $"$ | $f 3$. |
| 16 fluid ounces | 1 pint, | $"$ | $O$. |
| 8 pints | 1 gallon (wine meas.) |  | Cong. |

Nore.-1. The pound, ounce, and grain are the same as in troy weight, the ounce being differently subdivided.
2. The symbols are supposed to be derived from the inscriptions upon the ancient monuments of Egypt.
3. One minim equals one drop.

## LIQUID OR WINE MEASURE.



Liquid measure is, of course, used in measuring liquids.

## Table.

| 4 | gills (gi.) | 1 pint, | marked pt. |
| :---: | :--- | :---: | :---: |
| 2 | pints | 1 quart, | " |
| 4 quarts | 1 gallon, | qt. | gal. |
| $31 \frac{1}{2}$ gallons | 1 | barrel, | . |
| 2 | barrels or 63 gallons 1 hogshead, | b | hhd. |

Scale of Comparison.

## Wine Measure.

$$
\begin{array}{r}
\begin{array}{r}
\text { gal. qt. pt. gi. cu. in. } \\
\begin{aligned}
& 1=4=8=32=231 \\
& 1=2=8=57 \frac{3}{4} \\
& 1=4
\end{aligned} \\
28 \frac{7}{8}
\end{array}
\end{array}
$$



Dry Measure.

$$
\begin{array}{r}
\begin{array}{r}
\text { bu. pk. qt. } \quad \text { pt. } \quad \text { cu. in. } \\
1=4=32=64=2150 \frac{3}{4} \\
\text { nearly. } \\
1=8=16=537 \frac{1}{2} \\
1=2=67 \frac{1}{b}
\end{array} \quad 6
\end{array}
$$



Nore.-1. The denominations barrel and hogshead are used in estimating the capacity of cisterns, reservoirs, vats, \&c.
2. The barrel, hogshead, tierce, pipe, butt and tun, are the names of casks, which are usually gauged, having the number of gallons they hold marked on them.
3. Ale or beer measure, formerly used in measuring beer, ale, and milk, is now seldom used.
4. 1 gallon of pure water weighs nearly $8 \frac{1}{8} \mathrm{lb}$. avoirdupois, hence a pint weighs about a pound.
5. The standard unit of wine measure is the gallon, which contains 231 cubic inches.

The Imperial, or British gallon, contains 277.274 cubic inches.


Dry measure is used in measuring vegetables and articles. not fluid.
2 pints (pt.)
8 quarts
4 pecks
36 bushels

$$
\begin{array}{ll}
1 \text { quart, } & \text { qt. } \\
1 \text { peck, } & \text { pk. } \\
1 \text { bushel, } & \text { bu. } \\
1 \text { chaldron, } & \text { cald }
\end{array}
$$

- 36 bushels


Notes.-The standard bushel is the Winchester, which contains 2150.42 cubic inches, or 77.627 lbs . avoirdupois of distilled water at its maximum density.

Its dimensions are $18 \frac{1}{2}$ inches diameter inside $-19 \frac{1}{2}$ inches
outside, and 8 inches deep, and when heaped to a cone 6 inches high, contains 2748 cubic inches.

The Imperial or British bushel contains 2218 cubic inches, so that 32 of their bushels are equal to 38 of ours.

Heaping Measure.-Potatoes, turnips and esculent roots, apples and other fruits, meal and bran, corn on the ear, and in some States, oats, are sold by the heaping bushel measure.

Table of Comparison of the Measúres of Capactity. 1 gallon or 4 qt . wine measure contains 231 cubic inches. $\frac{1}{2} \mathrm{pk}$. or 4 qt . dry measure " $268 \frac{4}{5}$ " 1 gallon or 4 qt . beer measure

| " | 282 | " |
| :--- | :---: | :---: |
|  | $2150 \frac{1}{3}$ | " | 1, bushel dry measure $2150 \frac{1}{3}$ "

In England the following weights and measures are sometimes used:

| WEIGHT. |  |  |
| :---: | :---: | :---: |
| 3 pounds $=1$ stone, butchers' meat.' |  |  |
| 7 | pounds $=1$ clove |  |
| 2 | cloves=1 stone | common articles. |
| 2 | stone $=1$ tod of | wool. |
|  | tods $=1$ wey | ${ }^{6}$ |
| 2 | weys=1 sack | ${ }^{6}$ |
| 12 | sacks=1 last | 4 |
| 240 | pounds $=1$ pack |  |

CLOTH MEASURE.
$24^{*}$ inches $=1$ nail.
4 nails=1 quarter.
4 quarters = 1 yard.
3 quarters=1 Flemish ell.
5 quarters $=1$ English ell.
6 quarters $=1$ French ell.
4年5 quarters=1 Scotch ell.

DRY MEASURE.
2 quarts $=1$ pottle.
2 bushels=1 strike.
2 strikes $=1$ coom.
2 cooms=1 quarter.
5 quarters $=1$ load.
3 bushels=1 sack.
36 bushels $=1$ chaldron.
WINE MEASURE.
18 U. S. gal $=1$ runlet.
$\left.\begin{array}{ll}25 & \text { Eng. gal. or } \\ 42 & \text { U.S. gal. }\end{array}\right\}=1$ tierce.
2 tierces $=1$ puncheon.
${ }_{63}^{52_{4}^{1}}$ Eng. gal. or U. gal. $\}=1$ hogshead.
2 hogsheads $=1$ pipe.
2 pipes $=1$ tur.
$7 \frac{1}{2}$ Eng. gal. $=1$ firkin of beer.
4 firkins=1 barrel

## Table of the Comparison of Weights, \&c.

1 U. S. pound Troy=5760 grs. Troy. | 1 English yard=36 inches.
1 Eng. pound Troy=5760 " "
1 pound Apath. =5760 " " 1 U.S. pound AV. $=7000$ " $\quad 1$ Eng. " $=2218.19+$ "
1 Eng. pound Av. $=7000$ " " 1 ס. S. gallon $=231$. " 144 pounds Av. $=1.75 \mathrm{lb}$. " 1 Eng. " $=277.26+$ " 1 French gramme $=15.433 \mathrm{grs}$. Troy. 1 U.S. yard $=36$ inches.

1 French metre=39.368+inches.
1 J . S. bushel $=2150.42+\mathrm{cu}$. in

1 French litre $=61.533+\quad "$
1 French are $=119.664 \mathrm{sq}$. Jda.

## SQUARE MEASURE.



Square measure is used in calculating areas or surfaces, as of land, lumber, painting, paving, \&c.

## Table.

144 square inches (sq. in.) make I square foot,
9 square fect
301 square yards
40 square rods
4 roods
640 acres
" 1 square yard,
" 1 square rod,
" 1 rood, or qr. acre,
" 1 acre,
" 1 sq. mile or section,
marked sq. ft.
" sq. yd.
" sq. rd., $P$
" R .
" A.
" sq.m., sec.

## Scale of Comparison.

$$
\begin{aligned}
& \text { A. R. P. sq. yds. sq. ft. sq. in. } \\
& 1=4=160=4840=43560=6272640 \text {. } \\
& 1=40=1210=10890=1568160 \text {. } \\
& 1=30 \frac{1}{4}=272 \frac{1}{4}=39204 \text {. } \\
& 1=9=1296 \text {. } \\
& 1=144 .
\end{aligned}
$$

Note.-Artificers usually estimate their work-1. In glazing and stone-cutting, by the square foot. 2. In painting, plastering, paper-hanging, \&c., by the square yard. 3. In flooring, roofing, slating, \&c., by the 100 square feet: 4. In bricklaying, by the thousand bricks, by the square yard, and 100 feet.

The painting of mouldings, cornices, \&c., is estimated by measuring the entire.surface.

When bricklaying is estimated by square measure, the work is understood to be 12 inches thick.

Surveyor's square measure is used in finding the area of land.

| Table. |  |  |
| :---: | :---: | :---: |
| 625 square links (sq. 1.) | make 1 sq. rod, | marked sq. rd. |
| 16 sq. rods | " 1 sq. chain, | " sq. ch. |
| I's sq. chains | " I acre, | " A |
| 640 acres | " I sq. mile, | sq. mi. |
| 36 sq. miles (six miles square) | 1 township, | Tp. |

## LONG MEASURE.



Long measure is used for distances, \&c.
Table.
12 lines or 3 barley-corns 1 inch,
12 inches
3 ft .
$5 \frac{1}{2} \mathrm{yd}$.
40 rd .
8 fur.
1 foot,
1 yard,
1 rod,
1 furlong,
1 mile,
marked ft.

| " | yd. |
| :--- | :--- |
| " | rd. |
| " | fur. |
| " | mi. |

Scale of Comparison.

$$
\begin{aligned}
& \text { mi. fur. rod. yd. ft. in } \\
& 1=8=320=1760=5280=63360 \\
& 1=40=220=660=7920 \\
& 1=5 \frac{1}{2}=16 \frac{1}{2}=198 \\
& 1=3=36 \\
& 1=12
\end{aligned}
$$

## SURVEYORS’ MEASURE.

Gunter's chain is used by land surveyors. It is 4 rods or 66 feet long, and contains 100 links.

## Table.

| 25 links (li.) | 1 rod, | rd. |
| :---: | :--- | :--- |
| 4 rods | 1 chain, | ch. |
| 80 chains | 1 mile, | mi. |

Table of Miscellaneous Linear Measure.

| 3 inches | 1 palm. |  |
| :---: | :---: | :---: |
| 4 inches | 1 liand. | $\left\{\begin{array}{l}\text { Ueed to meazurlıg the Lelght of horses } \\ \text { at the shoulder. }\end{array}\right.$ |
| 9 inches | 1 span. |  |
| 3 fect | 1 pace or | step. |
| 3.28 feet | 1 metre. |  |
| 6 feet | 1 fathom. |  |
| 880 fathoms | 1 mile. | $\}$ Veec in measuring dophas at |
| 3 geographical miles | 1 leagne. |  |
| 60 60 6 | 1 degree. |  |

Note.-A hair's breadth is the 48th part of an inch.
A slip's cable is a chain, usually abont 120 fathoms or 720 feet long, hence the term "cable length" in nautical language denotes about that distance.

Notes.-1. A knot is a nautical or geographical mile. Thus, the phrase, " thirteen knots an hour," means thirteen geographical miles an hour.
2. 1 English mile equals 5280 feet, and 1 nantical, or geographical mile, equals 6086 feet.
3. The geographic mile equals about 1.15 English miles; the German short mile, about 3.9 English miles; the German long mile, about 5.75 English miles; the Prussian mile about 4.7 English miles; the Spamish common league, about 4.2 miles; and the Spanish judicial league about 2.6 miles.
4. Measures of length were at first derived from the different parts of the body, as the finger, hand, the span, or the length of the thumb and middle finger extended; cubit, or the length of the forearm ; and the fathom, or the length of the two arms extended.

## CLOTH MEASURE.

Cloth measure is used by merchants in the sale of cloth, ribbons, laces, \&c.

| Table. |  |  |  |
| :---: | :---: | :---: | :---: |
| 2 sixteenths (16th) | 1. eighth, | marked | 8th, $\frac{1}{8} \mathrm{yd}$. |
| 2 eighths | 1 quarter, | ${ }^{6}$ | qr., $\frac{1}{4} \mathrm{yd}$. |
| 2 quarters | 1 half, | " | hlf., $\frac{1}{2} \mathrm{yd}$. |
| 4 quarters or 2 halves | 1 yard, | " | yd. |

Note.-The old system of measuring cloth is not now used. By it each yard is divided into 4 quarters, and each quarter into 4 nails, a nail being $2 \frac{1}{4}$ inches. 3 quarters make a Flemish ell, 5 quarters an English ell, and 6 quarters a French ell.

## CUBIC MEASURE.



Table.

| 1728 cubic inches (cu. in.) | 1 cubic foot, | marked | cu. ft. |
| :---: | :---: | :---: | :---: |
| 27 cubic feet | 1 cubic yard, | " | cu. yd |
| 40 cubic ft . of round timber or 50 cubic feet of hewn timber | 1 ton or load, | " | T. |
| 16 cubie fect | 1 cord foot, | " | cd. ft. |
| 8 cord feet or $\}$ | 1 cord of wood, | " | Od. |
| 24, ${ }^{\text {c }}$ cubic feet | $1\left\{\begin{array}{l}\text { perch } \\ \text { stone, } \\ \text { or } \\ \text { masonry }\end{array}\right\}$ | " | Pch. |

Cubic measure is used in estimating the contents of solids; as wood, stone, capacity of cisterns, \&c.

Cubic men.


Cubic yard.

To find the cubic contents of any solid body.
Rule.-Multiply the length by the breadth, and that product by the thickness.
Notes.-1. A load of earth contains a cubic yard, and weighs about 3250 lbs.
2. Railway and transportation companies estimate light freight by the number of cubic feet it occapies; but heavy freight is estimated by weight.
3. A pile of wood 4 feet wide, 4 feet high, and 8 feet long, contains 1 cord; and a cord foot is 1 foot in length of such a pile.
4. A perch of stone or masonry is $16 \frac{1}{2}$ feet long, $1 \frac{1}{2}$ feet wide, and 1 foot high, and contains $24 \frac{3}{4}$ enbic feet.
5. A brick is usually 8 inches long, 4 inches wide, and 2 inches thick; hence 27 bricks make a cubie foot.
6. Joiners, painters, and masons make no allowance for windows, doors, \&c. Masons make no allowance for the corners of the walls of houses or of cellars. The size of a
cellar is estimated by the measurement of the outside of the wall.

Ton weight and ton measure.-A ton of hay, or any other coarse bulky article usually sold by that measure, is 20 gross hundreds, that is 2240 lbs. But in many places it has become the custom to count only 2000 lbs . for a ton. In freighting ships, 42 cubic feet are allowed to a ton; in the measurement of timber, 40 solid feet if round, and 50 if square make a ton.

## THE METRIC SYSTEM OF WEIGHTS AND MEASURES.*

The metricssystem of weights and measures had its origin in France during the Revolution in the year 1790. The following year a commission of scientific men was appointed by the government to select an appropriate unit, and as the result of their investigations the ten-millionth part of the earth's quadrant was chosen and called a Metre. To determine the unit of weight a cube of pure water at its greatest density, each edge of which is one-hundredth of a metre, was taken and called a Gramme (anglicized gram). The multiples and snbdivisions were made to correspond to the decimal scale, hence its great simplicity.
This system was declared obligatory in France after Nov. 2, 1801; but no penalty was attached to non-conformity until after-Jan. 1, 1841. The system has since been adopted wholly or in part by Spain, Belgium, Portugal, Holland, Great Britain, Greece, Italy, Norway, Sweden, Mexico, Guatemala, Venezuela, Ecuador, U. S. of Columbia, Brazil, Cliili, San Salvador, and the Argentine Republic. In 1866

* The following article on the Metric Syslem of Weights and Measures was prepared for this work by S. A. Felter. A.M., author of a well-known series of mathematical text-books.


## 174 METRIC SYSTEM OF WEIGHTS AND MEASURES.

Congress authorized the metric system in the United States by passing the following bill:-
an act to authorize the dse of the metric system of weghts and measures.
Be it enacted by the Senate and House of Representatives. of the United States of America in Congress assembled, That from and after the passage of this act, it shall be lawful throughont the United States of America to employ the weights and measures of the metric system; and no contract or dealing, or pleading in any court, shall be deemed invalid or liable to objection, because the weights or measures expressed or referred to therein are weights or measures of the metric system.
SEc. 2.-And be it further enacted, That the tables in the schedule hereto annexed, shall be recognized in the construction of contracts, and in all legal proceedings, as establishing, in terms of the weights and measures now in use in the United States, the equivaleuts of the weights and measures expressed therein in terms of the metric system; and said tables may be lawfully used for computing, determining, and expressing, in customary weights and measures, the weights and measures of the metric system.
The utility of the metric system commends itself, even at a glance, and hence it becomes important that all should become acquainted with it. It will doubtless soon come into general use to the exclusion of all other systems of weight and measure. The following is a brief and condensed view
of the system, so clear and simple that a child can understand it :-

The Metric System of weights and measures is formed upon the decimal scale, and has for its base an invariable unit derived from nature, and called a Metre; and upon this unit all the units of weight and measure are based.
The Metre is the ten-millionth part of the distance from the equator to the pole; and is the principal unit of linear measure.
The "Are is a square whose side is ten metres. It is the principal unit of superficial measure.

The Stere is a cube whose edge is a metre. It is the principal unit of solid or cubic measure.

The Litre is a cube whose edge is the tenth of a metre. It is the principal unit of all measures of capacity.

The Gram is the weight of a cube of pure water at its greatest density, whose edge is the hundredth part of a metre. A litre of water weighs 1,000 grams. It is the principal unit of weight.

The names of the derivative denominations are forined by joining a Latin or Greek prefix to the principal units. There are seven of these prefixes, derived as follows:

$$
\text { Latin. }\left\{\begin{array}{l}
\text { Milir, from Millesimus, a thousandth. } \\
\text { Cencr, from Centesimus, a hundredth. } \\
\text { Decr, from Decimus, a tenth. }
\end{array}\right.
$$

## 176

 METRIC SYSTEM OF WEIGHIS AND MEASURES.$$
\text { Greek. } \begin{cases}\text { Deca, ten. } & \\ \text { Hecro, from Hecaton, } & \text { one hundred. } \\ \text { Kilo, from Chilioi, } & \text { one thousand. } \\ \text { Myria, from Myrioi, } & \text { ten thousand. }\end{cases}
$$

The formation of the tables can be seen at a glance by the following:-


| Namiss. | Pro | Авн. | Nanes. | Pbosunciation. | Abr. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Millimetre | Mill | mm. | Hectostere | Hec'- |  |
| Centimetre | Sent'-e-mee'-ter | cm. | Kilost | Kill'-o-steer |  |
| Decimetre | Des -e-mee'ter | dm. | Myriastere | Mir'-e-2-Eteer | ys. |
| Metre | Mee'ter | $n$. | Millilitre | Mill"-e-li'-ter | ml. |
| Decametre | Dek' ${ }^{\text {a-a-mee'-ter }}$ | d | Centilitre | Sent'-e-li'-ter |  |
| Hectometre | Hee'-to mee'-ter | ${ }^{\text {hm. }}$ | Decilitre | Des'e-e-li' |  |
| Kilometre | Kill'-o-mee'ter | km. | Litre | Li'-ter |  |
| Myriametre | Mir'-e-a-mee'-ter | mym. | Decalit |  |  |
| Milliure | Mill' | ${ }_{\text {nna. }}$ | Hectelitre | Hec'-to-li' |  |
| Centiare | Sent'e-aire | ca. | Kilelitre | Kill'-o-li'-t |  |
| Deciare | Des' $e$-âre | da. | Myrialitre | Nir' $-\mathrm{e}-\mathrm{-l-1l}$ ' | myl |
| Are | Are |  | $\overline{\text { Milligrama }}$ | Mill'-e-gram |  |
| Decare | Dek'-Are | ${ }^{\text {dka. }}$ |  | Sont'-e-gram |  |
| IIectare | Hec'-tatre | ha. | Decigram | Des'-e-gram | g. |
| Kilare | Kill ${ }^{\text {are }}$ | ka. | Gram | Gram |  |
| Myriare | Mi | mya | Decagram | Dek'-a-gra |  |
| Millistcre | Mill -e-stee | ms. | Hectogram | Hee -togram |  |
| Centistere | Sont' ${ }^{\text {ce-steer }}$ | ${ }^{\text {css. }}$ | Kilogran | Kili'-o-gram |  |
| Decistere | Des'-e-steer | $d s$ | Myriagtam | Mir -e-a-gram | myg. |
| Decastere | Dek'-2-eteer | dks | Tonneau | 'Tun'-ne |  |

[^2] prefixed to Are.

## LINEAR MEASURE.



Note.-By the accompanying illustration it will be seen that one-tenth of a metre, or ten centimetres, equals abont $3 \frac{15}{16} \mathrm{in}$., or a trifle short of 4 in .

This measure, as well as the other measures and weights, is written as whole nuinbers and decimals. The decimal point is placed at the right of the unit; thus, 4.167. m. may be written 416.7 cm . To make a metric rule, cut a piece of wood, paper, or tape, $39 \frac{3}{8} \mathrm{in}$. long. Divide it into ten equal parts, and each part into ten other equal parts; each of these parts is 1 centimetre. Divide each centimetre into ten equal parts, and each part is a millimetre.
The diameter of the nickel five cent piece of 1866 is 2 centimetres, and its weight is 5 grams.

The Centimetre is the unit generally used for measure$8^{*}$
ments less than a metre. For its length in common measure see illustration.

The Metre is the unit commonly used by artisans. It equals 3 ft . $3 \frac{3}{8}$ iu. (nearly).

The Kilometre is the unit commonly used by surveyors in measuring distances. Its length is 198 rd .13 ft .10 in.

## Table.*

| Full |  | Contracted. |  |
| :---: | :---: | :---: | :---: |
| 10 millimetres $=$ | 1 centimetre. | 10 millimetres | 1 centimetre. |
| 10 centimetres | 1 decimetre. | 100 centimetres $=$ | 1 metre. |
| 10 decimetres $=$ | 1 Metre. | 100 metres = | 1 kilometre. |
| 10 metres | 1 decametre. |  |  |
| 10 decametres $=$ | 1 hectometre. |  |  |
| 10 lectomotres = | 1 kilometre. |  |  |
| 10 kilometres = | 1 myriametre. |  |  |

## SQUARE MEASURE.

The square Metre is the unit commonly used by artisans in specifying surfaces of small extent. It contains about 10 sq. ft. 110 sq . in.

The Are is the unit commonly used to express quantities less than the hectare. 100 ares make one hectare.

The Hectare is the unit commonly used by surveyors

* Note.-The unit of each table is divided into ten equal parts, designated by prefixing deci (tenth); as, decigram. The tenths are divided into ten other equal parts, designated by prefixing centi (hundredth); as, centigram. The hundrediths arc subdivided in the same manner, and are designated by prefixing melli (thousandth); as, milligram. The contracted table is the most con* venient for common use.
in estimating the contents of land. It contains 2.471 acres.

|  |  |
| ---: | :--- |
|  |  |
| 10 milliares | Ful. |
| 10 | 1 centiare. |
| 10 centiares | $=1$ deciare. |
| 10 deciares | $=1$ Are. |
| 10 ares | $=1$ decare. |
| 10 decares | $=1$ hectare. |
| 10 hectares | $=1$ kilare. |
| 10 kilares | $=1$ myrisre. |

Contracted.
100 sq. millimetres $=1$ sq. centimetre.
100 sq . centimetres $=1 \mathrm{sq}$. decimetre.
100 sq . decimetres $=1 \mathrm{sq}$. metre.
100 sq. metres $=1$ are.
100 ares $=1$ héctare

## CUBIC OR SOLID MEASURE.

The cibic Metre or Stere is the unit commonly used by engineers in estimating the solid contents of embankments, cellars, walls, \&c. It equals 1.308 cu . yards.
$\mathrm{T}_{\text {able. }}$

|  | Full. |
| :--- | :--- |
| 10 millisteres | $=1$ centistere. |
| in centisteres | $=1$ decistere. |
| 10 decisteres | $=1$ Stere. |
| 10 steres | $=1$ decastere. |
| 10 decasteres | $=1$ hectostere. |
| 10 hectosteres | $=1$ kilostere. |
| 10 kilosteres $=1$ myriastere. |  |

Contracted.
1000 cu . centimetres $=1$ litre. 1000 litres $=1$ stere. 1000 steres $\quad=1$ kilostere.

## DRY AND LIQUID MEASURE.

The unit commonly used in the measurement of grain, roots, and liquids by the barrel is the hectolitre. It equals 26.417 gal. wine measure, or 2.839 bu . dry measure.

The unit commonly used by grocers is the litre. It equals ${ }^{*}$
1.056 qt . wine measure, or . 908 qt . dry measure; or a trifle more than a wine quart.

## Table.

|  | Full. | Contracted. |  |
| :--- | :--- | :--- | :--- |
| 10 millilitres | $=1$ centilitre. | 100 centilitres | $=1$ litre. |
| 10 centilitres | $=1$ decilitre. | 100 litres | $=1$ hectolitre. |
| 10 decilitres | $=1$ Litre. |  |  |
| 10 litres | $=1$ decalitre. | 1000 litres | $=1$ kilolitre. |
| 10 decalitres | $=1$ hectolitre. |  |  |
| 10 hectolitres | $=1$ kilolitre. |  |  |
| 10 kilolitres | $=1$ myrialitre. |  |  |

## WEIGHT.

The unit commonly used in philosophical experiments, by jewellers and druggists is the gram. Its weight is 15.432 gr: troy.

The unit commonly used by grocers is the Kilogram, commonly contracted kilo. It is the weight of a litre of pure water, and equals 2.2046 lbs., or about $2 \frac{1}{6} \mathrm{lbs}$. avoirdupois.

The unit commonly used in weighing heavy bodies, as coal, iron, marble, R. R. freight, \&c., is the tonneau. It is the weight of a cubic metre of pure water, and equals 2204.6 lbs. avoirdupois.

Table.

|  | Frull. |
| :--- | :--- |
| 10 milligrams | $=1$ centigram. |
| 10 centigrams | $=1$ decigram. |
| 10 decigrams | $=1$ Gram. |
| 10 grams | $=1$ decagram. |
| 10 decagrams | $=1$ hectogram. |
| 10 hectograms | $=1$ kilogram. |
| 10 kilograms | $=1$ mpriagram. |
| 10 myriagrams | $=1$ quintal. |
| 10 quintals | $=1$ tonueau. |

Contracted.
100 centigrams
1000 grams
1000 kilograms
$=1$ kilogram.

## MEASUREMENT OF ANGLES.

In the centesimal or French method the right angle is divided into 100 equal parts called grades, the grade into 100 equal parts called minutes, the minute into 100 equal parts called seconds.

| Table. |  |  |
| :---: | :---: | :---: |
| 100 seconds ( ${ }^{\text {( }}$ ) | = | 1 minute (') |
| 100 minutes | = | 1 grade (gr.) |
| 100 grades | $=$ | 1 right angle (r. a.) |

Note.-Since the signs for both the common und centesimal methods are the same, to prevent confusion when minutes and seconds are expressed in the centesimal method, anncx the abbreviation cen.; thus, $3^{\prime} 46^{\prime \prime}$ een.

## CURRENCY.

| Soale. |  | Table. |
| :---: | :---: | :---: |
|  | 10 millimes | $=1$ centime. |
|  | 10 centimes | = 1 decime. ${ }^{\text {d }}$ |
| 感枵 | 10 decimes | $=1$ Franc. |
| 0. 000 |  |  |

LINEAR MEASURE.
Table* of equivalents.
$1 \mathrm{in} .=25 \frac{1}{2} \mathrm{~mm}$. (nearly).
1 ft . $=305 \mathrm{~mm}$. (nearly).
$1 \mathrm{yd} .=914 \mathrm{~mm}$.
$1 \mathrm{rd} .=5029 \mathrm{~mm}$.

$$
\begin{aligned}
& 1 \mathrm{mi}=1609.35 \mathrm{~m} \text {. } \\
& 1 \mathrm{~cm} .=.3937=\frac{8}{8} \text { in. (nearly). } \\
& 1 \mathrm{~m} .=39.37 \mathrm{in} .=1.093 \mathrm{yd} \text {. } \\
& 1 \mathrm{~km} .=.62137 \mathrm{mi} .=198 \mathrm{rd} ., 12 \mathrm{ft} \text {, }
\end{aligned}
$$

[^3]Square Measure.-Table.

```
1 sq. in. \(=6.5\) sq. cm.
\(1 \mathrm{sq} . \mathrm{ft} .=9.3 \mathrm{sq} . \mathrm{dm}\).
1 sq. yd. \(=.835\) sq. m.
1 acre \(=40.47 \mathrm{a}\).
```

$$
\begin{cases}1 \mathrm{sq} . \mathrm{cm} . & =.155 \mathrm{sq} . \mathrm{in} . \\ 1 \mathrm{sq} . \mathrm{m} . & = \\ 1550 \mathrm{sq.} . \mathrm{in} . \\ 10.76 \mathrm{sq} . \mathrm{ft.} . \\ 1 \text { are. } & =119.6 \mathrm{sq} . \mathrm{yd} . \\ 1 \mathrm{ha} . & =2.471 \text { acres. }\end{cases}
$$

Cubic Meastre.-Table.

1 cu. in. $=16.387 \mathrm{cu}$. centm.
1 cu. ft. $=\left\{\begin{array}{l}28.34 \text { litres. } \\ .0283 \text { steres. }\end{array}\right.$
$1 \mathrm{cu} . \mathrm{yd} .=.76531$ steres.
1 cord $=3.6281$ steres.
1 fluid oz. $=.02958$ litres.
1 gal. $=3.786$ litres.
1 bus. $=35.24$ litres.

$\mathrm{W}_{\text {eigrit.-Table. }}$

| oz. troy | $=31.1$ grams |  |
| :---: | :---: | :---: |
| 1 lb. troy | 373.2 |  |
| 1 lb . apoth. |  |  |
| 1 oz . avoir. | $=28.35$ | * |
| 1 lb . avoir. | $=453.6$ |  |

Angular Measure.-Table.

1 r. a. $=100$ grades.
$1^{\circ}=1 \frac{1}{4}$ grades.
$1^{\prime}=1.85$ minutes ('cen.).
$1^{*}=3.08$ seconds ("cen.).

$$
\left\{\begin{array}{l}
1 \text { cir. }=400 \text { grades. } \\
1, \text { grade }=9 \text { deg. } \\
1^{\prime} \text { cen. }=5.4^{\prime} 4^{\prime \prime} . \\
1^{\prime \prime} \text { cen. }=3.24^{\prime \prime} .
\end{array}\right.
$$

## SPECIFIC GRAVITY.

When a cubic foot of a substance is compared with the same bulk of water, and weighs a certain number of times as much, that number is called its specific gravity.

When any substance weighs less than water, it will float
on it, and when it weighs less than air, it will rise in it; thus, iron will float in melted lead, gas will rise in the air, and wood will float on water.

The weight of a cubic foot of water being 1000 ounces avoirdupois, it has been adopted as the standard of specific gravities. Hence the specific gravity of a body or substance is the proportion its weight bears to this standard.

To find the specific gravity of a body.
Rule.-Weigh it first in air and then in water, and take the difference of these weights; then as the difference is to the weight in air, so is 1000 to the specific gravity of the body.

Example.-What is the specific gravity of a stone weighing 20 lbs ., but in water only 15 lbs .?

Solution.-20-15=5 difference; then 5: 20::1000: 4000. Ans.


When the body is lighter than water.

Rule.--Attach to it a piece of metal sufficient to sink it in the water ; weigh the piece added and the body separately, both in and out of the water, and find how much each loses in water by subtracting its weight in water from its weight in air, and subtract the less of these differences from the greater; then as the remainder is to the weight of the light body in air, so is 1000 to the specific gravity of the body.

Example.-Required the specific gravity of a piece of wood which weighs 20 lbs . in air; attached to it is a piece of metal, which weighs 30 lbs . in air and 25 lbs . in water, and the two pieces together weighing in water 10 lbs . ?

Solution. $-20+30-10=40$

$$
30-25=5
$$

$$
35: 20:: 1000: 571.44 . \text { Ans. }
$$

'To reduce the specific gravity of a body to its weight in lbs. per cubic foot.

Runc.-Divide the specific gravity by 16 , and the quotient is the weight of a cubic foot in lbs.

Example.-Required the weight of a cubic foot of a substance the specific gravity of which is 4.800 ?

Solution.-4.800 $\div 16=300 \mathrm{lbs}$. Ans.
$\mathrm{T}_{\text {able, }}$ showing the specifi gravities of, various substances.

| DESIGNATION. | \% ${ }^{\text {P }}$ | designation. | Sp.Gravity. | designation. | vity |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Antimony | 6.712 | Cor | 2.700 | Co | . 240 |
| Arsenic, | 5.763 | Coal, bi | 1.270 | Cypress, | 644 |
| Bismuth, | 9.823 | " anthr | 1.556 | Ebony,. | 1.331 |
| Brass. . | 7.820 | Diamond, | 3.521 | Elder,. | 695 |
| Bronze | 8.700 | Earth, loose,. . | 1.500 | Elm, | 671 |
| Copper, | 8.788 | Emery,. | 4.000 | Fir, yellow | . 657 |
| Copper wire | 8.878 | Flint, | 2.590 | " white, | . 669 |
| Gold, pure. | 19.258 | Glass. | 2.930 | Lignum vitæ,.. | 1.333 |
| 4. 22 carat. | 17.486 | Granite, | 2.625 | Live oak, | 1.120 |
| " 20 carat | 15.709 | Grindsto | 2.143 | Logwood, | . 919 |
| Tron, cast, | 7.207 | Gypsum, | 2.168 | Mahogany | 1.063 |
| " bars, | 7.778 | Hone, white | 2.876 | Maple, | . 750 |
| Lead, . | 11.352 | Ivory, | 1.822 | Mulberry, | . 897 |
| Mercury,.. | 13.598 | Limestone. . | 3.180 | Orange, ...... | . 705 |
| Platinum, | 22.069 | Lime, quick,. | 804 | Pine, yellow,. | . 660 |
| Silver, | 10.477 | Manganese... | 7.000 | " white,.. | . 654 |
| Steel, | 7.833 | Marble, par.,. | 2.838 | Pear, ........ | . 661 |
| Tin, | 7.291 |  |  | Plum.. | 785 |
| Zinc..... | 6.861 | DRY |  | Quince,....... | . 705 |
| Alabaster | 2.730 | Apple,........ | . 793 | Sassafras,.... | . 482 |
| Amber, | 1.078 | Adder, | . 800 | Walnut, ..... | . 671 |
| Ashestos, | 3.073 | Ash, | . 845 | Willow | . 585 |
| Borax, | 1.714 | Beech | . 852 | Yew, | . 798 |
| Brick,......... | 1.900 | Box, | 1.231 | Hickory | . 838 |
| Chalk, | 2.784 | Campeachy | . 913 | Poplar,....... | . 383 |
| Charcoal, | . 441 | Cherry, | . 715 | " white,.. | . 529 |
| Clay,. | 1.930 | Coco | 1.040 |  |  |

When the specific gravity of a substance is given, to find the weight of a cubic foot.

Rule.-Multiply the weight of a cubic foot of pure water ( $62 \frac{1}{2} \mathrm{lbs}$.) by the specific gravity of the given substance.

I wish to find the number of cubic inches in a piece of cast iron, that will displace 25 ounces of water. What will it weigh?

Operation.-1. $25 \mathrm{oz} . \times 1728=43200$.
2. $43200 \div 1000=43 \mathrm{cu}$. in. (nearly). Ans.
3. $25 \mathrm{oz} . \times 450 \frac{1}{2} \div 1000=11 \mathrm{lb}$. (nearly). Ans.

Note.-To find the number of cubic inches in any irregular body, weigh a vessel containing sufficient rain water to cover the solid, then immerse the solid in the water by means of a string or wire held in the hand, being careful not to touch the vessel. While the solid is immersed, weigh the water and vessel again; the difference will be the weight of the water displaced by the solid.

Rule.-I. Multiply the weight of the water in ounces by 1728 , and divide by 1000 , the result will be the contents in cubic inches.
II. To find the weight, multiply the weight of the water displaced in ounces by the weight of a cubic foot of the substance, and divide the product by 1000 , and the result will be the weight in pounds.

I have a pattern of a lock that will displace 20 ounces of water; how much will 1000 copies of cast iron weigh ? How much will they cost me at 9 cents per pound?

$$
\begin{aligned}
& \text { OPERATION.- }-20 \times 450 \frac{1}{2} \div 1000=9.01 \mathrm{lb} . \\
& 2 . \\
& 9.01 \times 1000 \times 6.09=\$ 810.90 .
\end{aligned}
$$

I have a lead pattern of a wheel that displaces 15 ounces of water; what will 500 copies in brass cost me at 40 cents per pound?

Operation. $-15 \times 504 \frac{3}{4} \div 1000=7.571 \mathrm{lb}$.
ib.
$7.571 \times 500 \times \$ .40=\$ 1514.20$. Ans.
$\mathrm{T}_{\text {able, }}$ showing the weight of a oubic foot of different substances.

Avoír.
1 cubic foot of Brass. . . . . . . . . . . . . . . . . . weighs $504 \frac{3}{4} \mathrm{lb}$.



## VELOCITY.*

The average velocities of different objects are found in the following

> - Parker's Philosophy.


SOLD MATTER AND WATER IN ARTICLES OF DIET.
Table, showing the proportion of solid matter and water in 100 parts each of the following articles of diet.

| Designation. | $\begin{gathered} \text { Solid } \\ \text { mattar. } \end{gathered}$ | Whter. | Designation. | Solld | Water. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Wheat | 87 | 13 | Pork.. . . . . . . . . . . . . . . | 24 | 76 |
| Peas. | 87 | 13 | Codfish | 21 | 79 |
| Rice | 86 | 14 | Blood. | 20 | 80 |
| Beans | 86 | 14 | Tront. | 19 | 81 |
| Rye | 86 | 14 | Apples.. . . . . . . . . . . . | 18 | 82 |
| Corn. | 86 | 14 | Pears . . . . . . . . . . . . . | 16 | 84 |
| Oatmeal. | 74 | 26 | Carrots. | 13. | 87 |
| Wheat bread. | 51 | 49 | Beets. . | 13 | 87 |
| Mutton. | 29 | 71 | Milk. | 13 | 87 |
| Chicken. | 27 | 73 | Oysters. | 13 | 87 |
| Lean Beef | 26 | 74 | Cabbage . . . . . . . . . . . . | 8 | 92 |
| Eggs. | 26 | 74 | Turnips . . . . . . . . . . . | 7 | 93 |
| Feal. | 25 | 75 | Water Melon. | 5 | 95 |
| Potatoes. | 25 | 75 | Cucumber. . . . . . . . . | 3 | 97 |

## WEIGHTS OF GRAIN，SEEDS，\＆o．

Table，showing the weight of grain，seeds，\＆ec．，per bushel， as established by the Legislatures of the following States． The letter m indicates sold by measure．

| ARTIOLEE． |  |  |  |  | $\left\|\begin{array}{c} \underset{8}{8} \\ \underset{\sim}{0} \end{array}\right\|$ |  |  | 象 |  | 㻤 |  |  |  |  | 感 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Wheat，lbs． | 6060 | 60 |  | 60 | 60 | 60 | 60 | 56 | 60 |  | 60 | 60 |  | 60 | 60 |
| Rye，．．．．．．．．．．．．．．．．．．．．．．．．． | 5656 | 56 |  | 56 | 56 | 54 | 56 | 56 | jf |  | 56 | 56 | 56 | 56 | 56 |
| Corn， | 5856 | 56 |  | 56 | 56 | 56 | 56 | 56 | 56 |  |  | 56 | 56 | 52 | 56 |
| Oats， | 3232 | 32 |  | 32 | 35 | 32 | 32 | 28 | 30 | U | 33 | 30 | 32 | m | 34 |
| Barley， | 4848 | 47 |  | 48 | 48 | 44 | 48 |  | 46 | 6 |  | 48 | 46 | m | 48 |
| Buckwheat， | 48 | 48 |  | 42 | 52 | 40 | 42 | 45 | 46 | 6 | 52 | 50 | 46 | m | 48 |
| Clover seed， | 6064 |  | 60 |  | 60 |  | 60 |  |  |  | 60 |  |  | m | 60 |
| Timothy seed， | 4442 |  | 45 |  | 45 |  | m |  |  |  | 45 |  |  | m | 48 |
| Flax seed， | 5556 |  | 56 |  | 56 |  | m |  | m |  | 56 | 55 |  | m | 56 |
| Hemp seed， | 44 |  | 44 |  | 44 |  |  |  |  |  |  |  |  |  |  |
| Blue－grass seed， | 14 |  | 14 |  | 14 |  |  |  |  |  |  |  |  |  |  |
| Apples，dried，．．．．．．．．．．． | 2225 |  |  |  | 24 |  | 28 |  |  |  |  |  |  |  | 22 |
| Peaches，dried，．．．．．．．．．．．． | 3233 |  |  | 28 | 33 |  | 28 |  |  |  |  |  |  |  | 22 |
| Coarse salt， | 5650 | 85 | 50 |  | 50 |  |  |  |  |  | 50 |  |  |  | 56 |
| Fine salt， | 5650 | 62 | 50 |  | 50 |  |  |  |  |  |  |  |  | 5 | 56 |
| Potatoes， | 60 |  | 60 |  | 60 |  |  |  |  | 060 |  |  | 60 |  |  |
| Peas，．．．．．．．．．．．．．．．．．．．．．．．． | 60 |  |  |  |  |  |  |  |  |  |  |  |  |  | 60 |
| Beans，．．．．．．．．．．．．．．．．．． | 6256 |  | 60 |  | 60 |  |  |  |  |  | 60 |  |  |  | 60 |
| Castor Beans，．．．．．．．．．．．．．． | 46 |  | 46 |  | 46 |  |  |  |  |  |  |  |  |  |  |
| Onions，．．．．．．．．．．．．．．．． | 57 |  | 57 |  | 57 |  |  |  |  |  |  |  |  |  |  |
| Corn Meal，．．．．．．．．．．．．．． |  |  | 50 | 0 |  |  |  |  |  | 50 |  |  |  |  |  |
| Mineral Coal， |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

To reduce cubic feet to bushels，struck measure，divide the cubic feet by 56 and multiply by 45 ．

## PROPORTION OF ALCOHOL IN LIQUORS.

TABLE, showing the proportion of alcohol in 100 parts, each, of the following liquors.

| Designation. | Parts in 100. | Denignation. | Partaja 100 |
| :---: | :---: | :---: | :---: |
| Scotch Whiskey | 54.82 | Sherry .... | 19.17 |
| Irish Whiskey. | 53.9 | Claret. | 15.1 |
| Rum. | 53.68 | Champagn | 13.8 |
| Brandy | 53.39 | Gooseberry | 11.84 |
| Gin | 51.6 | Elder. | 8.79 |
| Port. | 22.9 | Ale. | 6.87 |
| Madeira | 22.27 | Porter. | 4.2 |
| Currant. | 20.55 | Cider ... | 9.8 to 5.2 |

## NUTRITIVE VALUE OF CERTAIN CROPS.

If we suppose an acre to yield the following quantities of the usually cultivated crops, the weight of dry starch and gum, of gluten, albumen, casein, \&c., of oil or fat, and of saline matter, reaped in each crop, will be represented nearly by the following numbers:-

| disignation. | 員 | lbs. |  |  |  | OH. | 䀧 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Wheat | 25 | 1500 | 225 | 825 | 180 | 45 | 30 |
| Barley. | 35 | 1800 | 270 | 1080 | 230 | 50 | 50 |
| Oats. | 50 | 2100 | 420 | 1150 | 300 | 100 | 75 |
| Peas.. | 25 | 1600 | 130 | 800 | 380 | 54 | 48 |
| Beans. | 25 | 1600 | 160 | 640 | 420 | 40 | 50 |
| Indian Corn. | 30 | 1800 | 100 | 1260 | 220 | 130 | 80 |
| Potatoes. | 12 tons | 27000 | 1080 | 4800 | 540 | 45 | 240 |
| Turnips | $30 \times$ | 67000 | 1340 | 6000 | 1000 | 200 | 450 |
| Wheat Straw | 117 " | 3000 | 1500 | 900 | 40 | 80 | 150 |
| Meadow Hay. | 12 ${ }^{\frac{1}{2}}$ | 3400 | 1020 | 1360 | 240 | 120 | 220 |
| Clover Hay. | $\frac{2}{2}$ " | 4500 | 1120 | 1800 | 420 | 200 | 400 |
| Cabbage ............ | $20 \times$ | 45000 | 430 | 2300 | 1300 | 130 | 600 |

Note.-From the above table it appears that the acre which, by cropping with wheat, would yield a given weight of starch, sugar, and gum, would, when cropped with barley or oats, yield one-fourth more of these substances-with potatoes, about four times as much, and with turnips eight times the same quantity. In other words, the piece of ground which, when sown with wheat, will maintain one man, would support one and a quarter if sown with barley or oats, four with potatoes, and eight with turnips-in so far as the nutritive power of these crops depends on the starch, sugar, and gum they contain.

## PERCENTAGE OF OIL IN SEEDS, GRAIN, \&c.

Oil per cent. in different seeds, grain, dec.


## QUANTITIES OF SEED REQUIRED TO THE AORE, \&O.

Table, showing the quantity of garden seeds requirea to plant a given space.
Designation.
Space and quantity of seéds.
Asparagus. . .-. . . 1 oz. produces 1000 plants, and requires a bed 12 ft. sq.
" Roots. . 1000 plant a bed 4 feet wide 225 feet long.
Eng. Dwarf Beans 1 quart plants from 100 to 150 feet of row.
French " 1 " " 250 or 350 feet of row.
Beans, pole, large l " " 100 hills.
" " smalli " " 300 hills or 250 feet of row.

| Designation. Space and quantity of seeds. |  |
| :---: | :---: |
| Beets.. | . 10 lbs. to the acre; 1 oz plants 150 feet of ro |
| Broccoli and Kal | 1 oz . plants 2,500 plants, and requires 40 aq. ft. of ground. |
| Cabbage. | Early sorts same as brocoli, and require 60 sq. ft. ground. The same as cabbage. |
| Cauliflower. |  |
| Carrot. | 1 oz to 150 of row. |
| Celery | 1 oz. gives 7000 plants, and requires 8 sq . feet of ground. 1 ox. for 150 hills. |
| Cucumbe |  |
| Cress | 1 oz sows a bed 16 feet square. |
| Egg Plant | $1 \mathrm{oz}$. gives 2000 planta. |
| Endive. | loz. gives 3000 plants, and requires 80 feet of ground. |
| Leek. |  |
| Lettuce. | 1 oz " 7000 " and requires seed bed of 120 feet. |
| Melon | 1 oz for 120 hills. ${ }^{\text {l }}$ |
| Nasturtium. | 1 oz sows 25 feet of row. |
| Onion. | $1 \mathrm{oz}$. " 200 " " |
| Okra | $1 \mathrm{oz} .{ }^{\text {a }} 200$ " " |
| Parsley | 1 oz. " 200 " " |
| Parsnip. | $1 \mathrm{loz}$. " 250 " " |
| Peppera. | 1 oz . gives 2500 plants. |
| Peas. | 1 quart aows 120 feet of row. |
| Pumpkin | 1 oz . to 50 hills. |
| Radish. | 1 oz to 100 feet. |
| Salsify. | 1 oz . to 150 feet of row. |
| Spinage | 1 oz to 200 feet of row. |
| Squash. | 1 oz . to 75 hills. |
| Tomato. | 1 zz gives 2500 plants, requiring seed bed of 80 feet. |
| Turnip. | 1 oz to 2000 feet. |
| Water Melon | 11 oz . to 50 hills, |
| Table, showing the quantity of seed required to the acre. |  |
| Deslgnetion. Wheat | Quantity of eeed. <br> Deelgnation. <br> 11 to 2 bugh Broom Corn. Quantity of aeed. |
| Barley ........ | ... $1 \frac{1}{2}$ to $2 \frac{1}{2}$ " Potatoes .............. 5 to 10 " |
| Oats ....... | .... 2 to 4 " Timothy.............. 12 to 24 quarts |
| Rye. . . . . . . | .... 1 to 2 " Mustard............. 8 8 to 20 " |
| Buckwheat. |  |
| Millet. . | .... 1 to $1 \frac{1}{2}$ " Flat Turnip........... 2 to 3 lbs. |
| Corn......... | .... $\frac{1}{4}$ to 1 " Red Clover.......... 10 to 16 " |
| Beans. | .... 1 to 2 " White Clover......... 3 to 4 " |
| Peas......... | .... $2 \frac{1}{2}$ to $3 \frac{7}{4}{ }^{\prime}$ Blue Grass............ 10 to 15 " |
| Hemp....... | .... 1 to $1 \frac{1}{2}$ " Orchard Grass........ 20 to 30 " |
| Flax........ | .... $\frac{1}{2}$ to 2 " Carrota............... 4 to 5 " |
| Rice.......... | ..... 2 to 27 " Parsnips.............. 6 to 8 " |
| Table, showing the quantity per acre when planted in rows or arills. |  |
| Broom Corn. . | .... 1 to It bush. \|Onions. . . . . . . . . . . . . . . . 4 to 5 lbs |
| Beans. | ... 1t to 2 Carrots................... 2 to $2 \frac{1}{2}$ " |
| Peas. . | ... 1- $1 \frac{1}{2}$ to 2 Parsnips ..................... 4 to 5 " |

## DEPTH OF SOWING WHEAT.

Wheat may be sowed too shallow as well as too deep. The depth must vary with the soil. A thinner covering is required in a close, thick, heavy soil, than in one light, gravelly, and sandy. Experiments made with wheat give the following results:-


## PROPORTIONS OF WEIGHT TO BULK.

Table, showing the weight per cubic foot of various substances, and the number of cubic .feet required to make a ton of each.

| Material. | $\left\lvert\, \begin{aligned} & \text { Lbs. } \\ & \text { cuble } \\ & \text { fl. } \end{aligned}\right.$ | Cub, feet per ton. | Material | Lbs. per cubje fl. | Cub. feet per ton. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| METALS. |  |  | STONE, ETC. |  |  |
| Cast Iron | 454 | 4.93 | Glass. | 180 | 12.44 |
| Wrought | 485 | 4.62 | Sand........................ | 95 | 23.56 |
| Steel. | 490 | 4.6 | Slate........................ | 167 | 13.4 |
| Copper, cast | 549 | 4.08 | W00D. |  |  |
| Copper, wrought | 557 | 4.02 | Ash | 48 | 46. |
| Brass. | 524 | 4.03 | Beach | 46 | 48.7 |
| Lead | 709 | 3.15 | Cedar | 35 | 64. |
| Silve | 654 |  | Elm. . . . . . . . . | 44 | 61. |
| Tin | 456 | 4.9 | Mahogany, Spanis | 57 | 39.3 |
| Gold | 1208 |  | Oak, English.... | 52 | 48. |
| Zinc. | 439 | 5. | White Oak, American | 45 | 49. |
| Platinum | 1218 |  | Live Oak.. | 70 | 32. |
| Mercury. | 848 | 3.64 | Pine, Pitch. | 43 | 51.6 |
| White Lead | 198 | 11. | " Yellow | 88 | $69$ |
| STONE, EXC. |  |  | White. | 34 46 | 66. 48. |
| Granite... | 165 | 13.5 |  | 40 | 48. |
| Limestone | 165 | 13.5 | Water, fresh. | 62.5 |  |
| Marble | 171 | 13.1 | " salt................... | 64.5 | 34.8 |
| Paving Stone | 151 | 14.8 | Air*......... . . . . . . . . . . . | .07529 | 3, 6 |
| Gand Stone | 130 | 17. | Steam $\dagger$ | . 03689 |  |
| Brick, | 120 | 18.7 | Cork | 15. | 149.8 |
| Chalk | 174 | 12.8 | Olive oil | 57. | 39.8 |
| Clay...... | 125 | 18. | Tallow ....... | 59. |  |

## CORN-PORK.

According to the Patent Office Reports, and the results of numerous experiments, 1 bushel of corn weighing 56 lbs . will produce $10 \frac{1}{2} \mathrm{lbs}$. of pork. Throwing off $\frac{1}{5}$ to come at the net weight, gives $8 \frac{2}{5}$ lbs. of pork as the product of 1 bushel of corn, or 1 lb . of pork as the product of $6 \frac{2}{3} \mathrm{lbs}$. of corn. $3 \frac{4}{5} \mathrm{lbs}$. of cooked corn-meal makes 1 lb . of pork. Assuming that it requires $6 \frac{2}{3} \mathrm{lbs}$. of corn to make 1 lb . of pork (exclusive of the labor of feeding and taking care of hogs), the relation which the price of corn bears to that of pork is exhibited in the following

Table, showing the price of port per lb. at different prices. per bushel for corn.

| Corn per bush. Cents. | Pork per pound. Cents. | Corn per bush. Cents. | Pork per pound. Cents. |
| :---: | :---: | :---: | :---: |
| $12 \frac{1}{2}$ | 1.50 | 38 | 4.52 |
| 15 | 1.78 | 40 | 4.76 |
| 17 | 2. | 42 | 5. |
| 20 | 2.38 | 45 | 5.35 |
| 22 | 2.62 | 50 | 5.95 |
| 25 | 2.96 | 55 | 6.54 |
| 30 | 3.57 | 60 | 7.14 . |
| 33 | 3.92 | 65 | 7.74 |
| 35 | 4. | 70 | 8,57 |

By reversing the above table we have the price of corn per bushel at different prices per lb. for pork. The use of the above table is obvious. For example, should corn be
selling for 50 cents per bushel and pork for only 5 cents per lb., it would be most profitable to sell the corn ; but should corn be selling for 40 cents per bushel and pork for 6 cents per lb., it would be most profitable to reduce the corn to pork, and sell the latter.

To find the price of pork per lb., taking the price of corn per bushel as the datum.

Rule.-Divide the price of a bushel of corn by 8.40 (the number of lbs. of pork produced by a bushel of corn), and the quotient will be the answer.

Example.-When corn is 20 cents per bushel, what should be the price of pork per lb.?

Solution. -20.00 cents, $\div 8.40$ lbs., $=2.38$ cents. $n$ Ans.
To find the price of corn per bushel, taking the price of pork per lb. as the datum.

Rule.-Multiply the price of a lb. of pork by 8.40 (the number of lbs. of pork produced by a bushel of corn), and the product will be the answer.

Example.--What should be the price of corn per bushel when pork is selling at $4 \frac{1}{2}$ cents per lb.

Soldtion.- 4.50 cents, $\times 8.40 \mathrm{lbs} .,=37.8$ cents. Ans.
Note.-The foregoing table and rules must not be taken as invariably correct. It requires but little reflection to satisfy the farmer that the proportions and results exhibited by them must be influenced by many conditions and causes, such as the sample of corn used, the constitution and breed
as well as the age of the animal, its condition, powers of digestion, habits, health, \&c. The very nature of the subject precludes the possibility of exactly defining the results and proportions. At best we can only have some general, average results and rules. The foregoing is deemed a safe general average.


## LIFE AND INCREASE OF ANIMALS.



To keep hens in winter.

## Provide-

1. A comfortable roost;
2. Plenty of sand, gravel and ashes, $d r y$, to play in;
3. A box of lime;
4. Boiled meat, chopped fine, every two or three days;
5. Corn and oats, which will be best if boiled tender ;
6. All the crumbs and potato parings;
7. Water, neither cold nor blood-warm.

This treatment has proved quite successful in a great many cases where the formnla has been strictly adhered to, and hens which without it gave no eggs, with it immediately laid one each, on an average, every two days.
$\mathrm{T}_{\text {able, }}$ showing the period of reproduction and gestation of domestic animals.

| designation. | Proper age for reproduo Hoa. | Period ofthe power of reproduction la yeare. | $\begin{aligned} & \text { No. of Fe- } \\ & \text { males for oos } \\ & \text { Male. } \end{aligned}$ | pratod or geitation amd inctiation |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | her test pe rlod, days. | $\begin{array}{\|l\|} \text { Mean perı- } \\ \text { od, days. } \end{array}$ | Longest pe riod, deys. |
| Mare, ... | 4 years. | 10 to 12 |  | 322 | 347 | 419 |
| Stallion...... | 5 . | 12 to 15 | 20 to 30 |  |  |  |
| Cow, .. | $3 \times$ | 10 to 14 |  | 240 | 283 | 321 |
| Buil. | 3 " | 8 to 10 | 30 to 40 |  |  |  |
| Ewe, ........ | 2 " |  |  | 146 | 154 | 161 |
| Ram, ........ | $2{ }^{2}$ | 7 | 40 to 50 |  |  |  |
| Sow, ......... | 1 " | 6 |  | 109 | 115 | 143 |
| Boar. | $1{ }^{1}$ | 6 | 6 to 10 |  |  |  |
| She Goat,. | 2 " | 6 |  | 150 | 156 | 163 |
| He Goat, | 2 | 5 | 20 to 40 |  |  |  |
| She Ass,. | 4 " | 10 to 12 |  | 365 | 380 | 391 |
| He Ass. | 5 \% | 12 to 15 |  |  |  |  |
| She Buffalo,.. |  | 8 |  | 281 | 308 | 335 |
| Bitch, ....... | 2 " | 8 to 9 |  | 55 | 60 | 63 |
| Dig. . ........ | 2 | 8 to 9 |  |  |  |  |
| She Cat,..... | $1 \times$ | 5 to 6 |  | 48 | 50 | 56 |
| He Cat....... | 1 ، | 9 to 10 | 5 to 6 |  |  |  |
| Doe Rabbit.. | 6 months | 5 to 6 |  | 20 | 28 | 35 |
| Buck Rabbit,. | $6{ }^{\prime}$ | 5 to 6 |  |  |  |  |
| (lock, ........ |  | 5 to 6 | 12 to 15 |  |  |  |
| Hen, ......... |  | 3 to 5 |  | 19 | 21 | 24 |
| Turkey, ..... |  |  |  | 24 | 26 | - 30 |
| Duck, ........ |  |  |  | 28 | 30 | 32 |
| Goose, . . . . . . |  |  |  | 27 | 30 | 33 |
| Pigeon,...... |  |  |  | 16 | 18 | 20 |
| Pea Hen.... |  |  |  | 25 | 28 | 30 |
| Guinea Hẹn.. |  |  |  | 20 | 23 | 25 |
| Swan,........ |  |  |  | 40 | 42 | 45 |

Growth and life of animals.
Man grows for 20 sears, and lives 90 or 100 years.

| The Camel | ${ }^{*}$ | , | 8 | * | ${ }^{\text {a }}$ | ${ }^{6}$ | 40 |  | ${ }^{6}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| The Horse | 4 | ${ }_{6}$ | 5 | ${ }^{6}$ | 6 | ${ }_{6}$ | 25 |  | 4 |
| The Ox | 4 | ${ }^{6}$ | 4 | " | * | 6 | 1.5 to | 20 | ${ }^{6}$ |
| Ihe Lion | " | 6 | 4 | ، | ، 6 | ، 6 | 20 |  | 4 |
| The Log | 6 | 6 | 2 | ${ }^{6}$ | ${ }^{6}$ | 6 | 12 to | 14 | ${ }^{6}$ |
| The ( at | ' | ${ }^{6}$ | 12 | 16 | 4 | ${ }_{6} 6$ | 9 or | 10 | 6 |
| 'I'tue Hare | " | 6 | 1 | ${ }^{\prime}$ | ${ }^{6}$ | 6 | 8 |  | ${ }^{6}$ |
| The Guinea |  | * |  | mon | g, | li | 6 or | 7 | 6 |

A Table showing at one view when Forty Weeks (the period of gestation in a cow) will expire, from any day throughout the year.

| Jan. | Oct | $\left\lvert\, \begin{array}{r}\text { ab } \\ 1\end{array}\right.$ | Nuv | March | Dter | $\Delta \mu \mathrm{ill}$ 1 | Jan ${ }_{6}$ | May. | Feb. | June. | $\begin{gathered} \text { March. } \\ 8 \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | 9 | 2 | 0 | 2 | 7 | 2 | 7 | 2 | 6 | 2 | 9 |
| 3 | 10 | 3 | 10 | 3 | 8 | 3 | 8 | 3 | 7 | 3 | 10 |
| 4 | 11 | 4 | 11 | 4 | 9 | 4 | 9 | 4 | 8 | 4 | 11 |
| 5 | 12 | 5 | 12 | 5 | 111 | 5 | 10 | 5 | 9 | 5 | 12 |
| 6 | 13 | 6 | 18 | 6 | 11 | 6 | 11 | 6 | 10 | 6 | 13 |
| 7 | 14 | 7 | 14 | 7 | 12 | 7 | 12 | 7 | 11 | 7 | 14 |
| 8 | 15 | 8 | 15 | 8 | 13 | 8 | 13 | 8 | 12 | 8 | 15 |
| 9 | 16 | 9 | 16 | 9 | 14 | 9 | 14 | 9 | 13 | 9 | 16 |
| 10 | 17 | 10 | 17 | 10 | 15 | 10 | 15 | 10 | 14 | 10 | 17 |
| 11 | 18 | 11 | 18 | 11 | $11 i$ | 11 | 16 | 11 | 15 | 11 | 18 |
| 12 | 19 | 12 | 19 | 12 | 17 | 12 | 17 | 12 | 16 | 12 | 19 |
| 13 | 20 | 13 | 20 | 13 | 18 | 13 | 18 | 13 | 17 | 13 | 21) |
| 14 | 21 | 14 | 21 | 14 | 19 | 14 | 1! | 14 | 18 | 14 | 21 |
| 15 | 42 | 15 | 22 | 16 | 20 | 15 | 20 | 15 | 19 | 15 | 22 |
| 16 | 23 | 16 | 23 | 16 | 21 | 16 | 21 | 16 | 20 | 16 | 23 |
| 17 | 24 | 17 | 21 | 17 | 2. | 17 | 22 | 17 | 21 | 17 | 24 |
| 18 | 2 j | 18 | 25 | 18 | 23 | 18 | 23 | 18 | 22 | 18 | 25 |
| 19 | 26 | 19 | 26 | 19 | 24 | 19 | 24 | 19 | 23 | 19 | 26 |
| 20 | 27 | 20 | 27 | 21) | 25 | 20 | 25 | 20 | 24 | 20 | 27 |
| 21 | 28 | 21 | 28 | 21 | 26 | 21 | 23 | 21 | 2.5 | 21 | 28 |
| 23 | 29 | 22 | 49 | 23 | 27 | 22 | 27 | 22 | 26 | 23 | 29 |
| 23 | 3! | 23 | 30 | 23 | 28 | 23 | 28 | 23 | 27 | 23 | 3) |
| 24 | 31 |  | Dec | 21 | 29 | 24 | 29 | 24 | 28 | 24 | 31 |
|  | Nov | 24 | 1 | 25 | 31 | 25 | $3{ }^{1 /}$ |  | arch |  | April. |
| $25^{\circ}$ | 1 | 25 | 2 | 26 | 31 | 26 | 31 | 25 | ] | $2 ;$ | 1 |
| 26 | 2 | 26 | 3 |  | Jan |  | Feb | 26 | 2 | 26 | 2 |
| 27 | 3 | 27 | 4 | 27 | 1 | 27 | 1 | 27 | 3 | 27 | 3 |
| 28 | 4 | 28 | 5 | 28 | 2 | 28 | 2 | 28 | 4 | 28 | 4 |
| 29 | 5 | 29 | 6 | 29 | 3 | 29 | 3 | :9 | 5 | 29 | 5 |
| 30 | 6 |  |  | 30 | 4 | 30 | 4 | 30 | 6 | 30 | 6 |
| 31 | 7 |  |  | 31 | 5 |  |  | 31 | 7 | 31 | 7 |

Talle continued.

| July. April ${ }_{7}$ | Ang. | $\text { May. }_{8}$ | Sept. June. | Oct. | July |  | $\operatorname{\Delta ug}_{\mathbf{X}}$ | Dec. | $\begin{gathered} \text { Sept } \\ 7 \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 28 | 2 | 9 | 29 | 2 | 9 | 2 | 9 | 2 | 8 |
| 3 a | 3 | 10 | 310 | 3 | 10 | 3 | 111 | 3 | 9 |
| 410 | 4 | 11 | $4 \quad 11$ | 4 | 11 | 4 | 11 | 4 | 10 |
| 5 11 | 5 | 12 | $5 \quad 12$ | 5 | 12 | 5 | 12 | 5 | 11 |
| 612 | 6 | 13 | $6 \quad 13$ | 6 | 13 | 0 | 13 | 6 | 12 |
| 7 13 | 7 | 14 | 714 | 7 | 14 |  | 14 | 7 | 13 |
| $8 \quad 14$ | 8 | 15 | $8 \quad 15$ | 8 | 15 | 8 | 15 | 8 | 14 |
| 915 | 9 | 16 | $9 \quad 1 \mathrm{i}$ | 9 | 16 | 9 | 16 | 9 | 15 |
| $10 \quad 16$ | 10 | 17 | $10 \quad 17$ | 10 | 17 | 10 | 17 | 10 | 16 |
| 1117 | 11 | 18 | $11 \quad 18$ | 11 | 18 | 11 | 18 | 11 | 17 |
| $12 \quad 18$ | 12 | 19 | $12 \quad 19$ | 12 | 19 | 12 | 19 | 12 | 18 |
| 1319 | 13 | 20 | 13 2, | 13 | 20 | 13 | 20 | 13 | 19 |
| 1420 | 14 | 21 | 14.21 | 14 | 21 | 14 | 21 | 14 | 20 |
| $15 \quad 21$ | 15 | 22 | $15 \quad 22$ | 15 | 22 | 15 | 22 | 15 | 21 |
| 16 2! | 16 | 23 | $16 \quad 23$ | 16 | 23 | 16 | 23 | 16 | 22 |
| 1723 | 17 | 24 | $17 \quad 24$ | 17 | 24 | 17 | 24 | 17 | 23 |
| $18 \quad 24$ | 18 | 25 | $18 \quad 25$ | 18 | 25 | 18 | 25 | 18 | 24 |
| $19 \quad 25$ | 19 | 26 | 19 26 | 19 | 26 | 19 | 26 | 19 | 25 |
| 20 2f | 20 | 27 | $20 \quad 27$ | 20 | 27 | 20 | 27 | 20 | 26 |
| $21 \quad 27$ | 21 | 28 | $21 \quad 28$ | 21 | 28 | 21 | 28 | 21 | 27 |
| 22 28 | 22 | 29 | $22 \quad 29$ | 22 | 29 | 22 | 29 | 22 | 28 |
| $23 \quad 29$ | 23 | 30 | 23 30 | 23 | 30 | 23 | 31 | 23 | 29 |
| 2430 | 24 | 31 | July. | 24 | 31 | 24 | 31 | 24 | 30 |
| May. |  | June | 24 1 |  | Aug. |  | Sept. |  | Oct. |
| 25 J | 25 | 1 | 25 2 | 25 | 1 | 25 | 1 | 25 | 1 |
| $26 \quad 2$ | -26 | 2 | 263 | 26 | 2 | 26 | 2 | 26 | 2 |
| $27 \quad 3$ | 27 | 3 | 274 | 27 | 3 | 27 | 3 | 27 | 3 |
| 284 | 28 | 4 | 28 5 | 28 | 4 | 28 |  | 28 | 4 |
| 29 5 | 29 | 5 | $29 \quad 6$ | 29 | 5 | 29 | 5 | 29 | 5 |
| 30 | 30 | 6 | 307 | 30 | 6 | 30 | 6 | 30 | 6 |
| $31 \quad 7$ | 31 | 7 |  | 31 | 7 |  |  | 31 | 7 |

## AGE OF ANIMALS.

## To find the age of a horse.

The colt is born with 12 grinders. When 4 front teeth have made their appearance the colt is 12 days old, and when the next 4 appear it is four weeks old. When the eorner teeth appear it is eight months old, and when the latter lave attained the height of the front teeth it is a year old. The two year old colt has the kernel (the dark substance in the middle of the tooth's crown) ground or worn out of all the front teeth. In the third year the middle front teeth are being shifted, and when three years old these are substituted for the horse teeth. In the fourth year the next 4 are slifted; and in the fifth year the corner teeth are shifted. In the sixth year the kernel is worn out of the middle front teeth, and the bridle teeth have now attained their full growth. At seven years a hook lias been formed on the corner teeth of the upper jaw : the kernel of the teeth next at the middle is worn out, and the bridle teeth begin to wear ${ }^{6}$ off. At eight years of age the kernel is worn out of all the lower front teeth, and begins to decrease in the middle upper fronts. In the ninth year the kernel has wholiy disappeared from the upper middle front teeth, the hook on the corner teeth has increased in size, and the bridle teeth loose
their point. In the tenth year the kernel has worn out of the teeth next to the middle fronts of the upper jaw, and in the eleventh year the kernel has entirely disappeared from the corner teeth of the same jaw. At twelve years the crowns of all the front teeth in the lower jaw have become triangular, and the bridle teeth are much worn down. As the horse advances in age the gums shrink away from the teeth, which appear long and narrow, and the kernels become changed into darkish points. Gray hairs increase in the forehead and the chin becomes angular.

A modification of the foregoing, much more scientific or systematic, and probably quite as reliable, is the classification of Pessina, a distinguished veterinary surgeon of Germany.

Its principles may be distinctly understood by reference to the accompaning ents, $\mathrm{A}, \mathrm{B}, \mathrm{C}$, and D .

A, represents the corner tooth of a young horse; the oth-


Fig. A.
er nippers vary very little from this one in their construction and form.

The top of the tooth is long from side to side, and the extreme lower end is long from front to rear. The manner in
which the shape changes as we go farther down the tooth is represented in tigure $B$, where cross sections at different sections are shown.


Fig. B.
The horse's tooth is worn away by use, and its upper surface assumes the form of these different sections consecutively, according to the extent to which it has been worn off. Of course, this only forms a gencral rule by which to judge of the age of a horse. Cribbiters, horses feeding cliefly on very old dry lay, and oats mixed with grit, and horses which are continnally gnawing their mangers, will have their teeth worn away faster than will those which are fed on grass and moistened, cut, and ground feed, and which kecp their teeth to themselves when they are not eating.
Pessina's table of indications of age is correct for the average of horses, and in all cases is sufficiently so for general purposes.
We quote the following from Herbert's hints to horse-keepers:-
"At five years the corners are 'up even with the other teeth; the mark is entirely worn out from the middle nippers, and partly worn from the next pair (fig. C).


Fig. 0.
"At six years the mark is almost gone from the second pair, and the outer edge of the corner teeth is worn down.
"At seven years the mark is entirely gone from the second pair, and the edges of the corner teeth are worn somewhat flat.
"At eight years the teeth of the lower jaw are worn entirely flat, the mark having disappeared from all of them. The form of the surface of the tooth has become oval, and the central enamel is long from side to side, and is near to the front of the tooth.
"At nine years the middle nippers are rounded on the inner side, the oval of the second pair and of the corner teeth becomes broader, the central enamel is nearer to the inner side, and the marks have disappeared from the teeth of the upper jaw.
"At ten years the second pair are rounded on the inner side, and the central enamel is very near to the inner side.
"At eleven years the corner teeth are rounded, and the ceṇtral enamel becomes very narrow.
"At twelve years the nippers are all roundcd, and the central enamel has cntirely disappeared from the lower jaw; but it may still be seen in the upper jaw.
"At thirteen years the middle nippers commence to assume a triangular form in the lower jaw, and the central enamel has entirely disappeared from the corner teeth of the upper jaw.
"At fourteen years the middle nippers have become trigular, and the second pair are assuming that form; the central enamel has diminished in the middle nippers of the upper jaw.
"At fifteen years the second pair have become triangular (fig. D) ; the central enamel is still visible in the upper jaw.


Fig. D.
"At sixteen years all of the teeth in the lower jaw have become triangular, and the central enamel is entirely removed from the second pair in the upper jaw.
"At seventeen years the sides of the triangle of the middle nippers are all of the same length; the central enamel has entirely disappeared from the upper teeth.
"At eighteen years the sides of the triangle of the middle nippers are longer at the sides of the teeth than in front.
" At nineteen years the middle nippers become flattened from side to side and long from front to rear.
"At twenty years the second pair assume the same form.
"At twenty-one years all of the teeth of the lower jaw have become flattened from side to side; the greatest diamter having become exactly the reverse of what it was in youth."

## TO FIND THE AGE OF CATTLE.

In the cow the horn is often regarded as affording, by the number of its rings, a criterion of the animal's age. . The lorn of a heifer remains smooth or unprotrberant till the expiration of the second year of its life. A circle of thicker matter, or sort of horny button then begins to be formed, which is completed in another year; the next year this circle or button moves from the head, or is impelled by the cylindric growth of the horn, and another circle or button begins to be formed, which after another twelve-month is also impelled ontward, and so on year after year of the whole life of the animal, so that by counting the number of rings on the cow's horns, and adding 2 to their number, its age is arrived at.

The rings on the bull's horns do not begin to appear until he is five years old, so that to arrive at his age we must add 5 to the number of rings. The horn of the ox is so very
strongly modified by his peculiar condition, as to be totally unlike that of the bull, the rings scarcely appearing at all.

The above rule would enable one to tell the age of the animal with unerring certainty, were the growth of the horns in each animal uniform and the rings distinct, which is not always the case; the rings often being confused and indistinct, and the growth of the horns varying in different animals. Besides, knavish cattle dealers often rasp off several of the rings of old and unsalable cows, and so smooth the rest of the horns as to make them look in keeping with their pretensions.

A safer rule is afforded by the teeth. At birth the two centre teeth (front) protrude through the gum; at the end of the second week the second pair appear; at the end of the third week the third pair, and at the end of the fomrth week the fourth and last pair. The wearing of these teeth now constitntes the only guide for the next three months, at the expiration of which time all these (which are called the " milk teeth ") begin to diminish in size and shrink away from each other, which process continnes until the animal is two years old, when the new teeth begin to push ont the slender remnants of the old and shrunken ones. At the end of the second year the first two permanent teeth appear in front; at three years the second pair are well up: at four the third pair, and at five years the fourth and last pair, have appeared, and the central pair are beginning to become worn down : at six years the last pair are full sized: at seven
years the dark line with bony boundery appears in all the teeth, and a broad eircular mark appears within the central pair: at eight years this mark appears in all the teeth : at nine years a process of absorption and slarinkage, similar to that which reduced the first teeth, begins to take place in the central pair ; at ten it begins with the second pair; at eleven with the third pair, at twelve with the fourth pair. The age of the animal, after this period is attained, is determined by the degree of shrinkage and wearing away of all the teeth in the order of their appearance, until the fifteenth year, when scarcely any teeth remain.

## To ascertain the age of sheep.

The age of sheep may be known by the front teeth, which are 8 in number, and appear the first year all of a size. In the second year the two middle ones fall out and are supplanted by two large ones. During the third year a small tooth appears on each side. In the fourth year the large teeth are six in number. In the fifth year all the front teeth are large, and in the sixth year the whole begin to get worn.

## To tell the age of goats.

The age of goats is ascertained by their teeth in the same manner that of the sheep is, and by the annular rings on their horns.

## COMPUTE WEIGHT OF CATTLE.



For cattle of a girth of from 5 to 7 feet, allow 23 lbs. to the superficial foot.

For cattle of a girth of from 7 to 9 feet, allow 31 lbs. to the superficial foot.

For small cattle and calves of a girth of from 3 to 5 feet, allow 16 lbs . to the superficial foot.

For pigs, sheep, and all cattle measuring less than 3 feet girth, allow 11 lbs. to the superficial foot.

Rule.-Ascertain the girth in inches back of the shoulders, and the length in inches from the square of the buttock to a point even with the point of the shonlder-blade. Multiply the girth by the length, and divide the product by 144 for the superficial feet, and then multiply the superficial feet by
the number of lbs. allowed as above for cattle of different girtlls, and the product will be the number of lbs. of beef, veal, or pork in the four quarters of the animal. To find the number of stone divide the number of lbs. by 14.

Example.-What is the computed weight of beef in a steer, whose girth is 6 feet 4 inches, and length 5 feet 3 inches?

Solution.-76 inches, girth, $\times 63$ inches, length,$=4788 \div$ $144=33 \frac{1}{4}$ square feet, $\times 23=764 \frac{3}{4}$ lbs., or $54 \frac{5}{8}$ stonc. Ans.

Note.-When the animal is but half fattened a deduction of 14 lbs . in every 280 , or one stone in every 20 must be made; and if very fat, one stone for every 20 must be added.

Where great numbers of cattle are annually bought and sold under circumstances that forbid ascertaining their weight with positive accuracy, the compute weight may be thus taken with approximate exactness-at least with as muctiaccuracy as is necessary in the aggregate valuation of stock. No rules or tables can, however, be at all times implicitly relied on, as there are many circumstances connected with the build of the animal, the mode of fattening, its condition, breed, \&c., that will influence the measurement, and consequently the weight. A person skilled in taking the compute weight of stock soon learns, however, to make allowances for all these circumstances.

## The following table is compiled from two English works

 on the subject:-| Girtb. ft. in. | Length. <br> ft. in. | Renton's Table. stone. lb. | Cary's Table. stone. lb. |
| :---: | :---: | :---: | :---: |
| 50 | 36 | 210 | 2100 |
| 50 | 40 | 24.0 | 2400 |
| 56 | 39 | 271 | 2700 |
| 56 | 40 | 344 | 3407 |
| 60 | 46 | 388 | 3811 |
| 60 | 50 | 431 | 4300 |
| 66 | 46 | 459 | $45 \quad 07$ |
| 6.6 | 49 | 480 | 4800 |
| 70 | 56 | $6 \pm 6$ | 6407 |
| $70$ | 60 | 705 | 7003 |
| $80$ | 66 | 998 | 9912 |
| 80 | 70 | 1075 | . 10706 |



## FOOD OF ANIMALS.



Table, showing the comparative difference between good hay and the substances mentioned below, as food for stockbeing the results of experiments.

10 lbs. of hay are equal to
8 to 10 lbs. clover hay.
45 to 50 " green clover.
40 to 50 " wheat straw.
20 to 40 " barley straw.
20 to 40 " oat straw.
10 to 15 " pea straw.
20 to 25 " potatoes.
25 to 80 " carrots (red).
40 to 45 " " (white).

10 lbs. of hay are equal to
30 to 35 lbs. mangold wurtzel.
45 to 50 " turnips.
20 to 30 " cabbage.
3 to 5 " peas and beans.
5 to 6 " wheat.
5 to 6 " barley.
4 to 7 " oats.
5 to 7 " Indian corn.
2 to 4 " oil cake.

Note.-In the use of the above table much of course will depend upon the quality of the sample, the age and constitution of the animal, and the form in which the food is administered. Much also depends upon a change of food, and a due admixture of the different kinds.
$T_{\text {able, }}$ showing the comparative difference between good hay and the articles mentioned below, as food for stock-being the mean of experiment and theory.

100 lbs of hay are equal to
275 lbs green Indian corn.
442 b rye straw.
360 '. wheat "
$16 \pm$ " oats "
180 " barley "
153 "pea "
200 " buckwheat gtraw.
201 " raw potatoes.
17.5 " boiled "

339 " mangold wurtzel.
504 " turnips.
300 " carrots.

100 Ibs. of hay are equal to
5t lbs. ryo.
46 " wheat.
59 " oats.
45 " peas and beaus mixed.
64 " buek wheat.
57 ". Indian conn.
63 6. acorns.
105 " wheat bran. .
109 " rye "
167 " wheat. pea, and oat chaff.
179 " ryo nud barley, mixed.

Note.-It must be borne in mind that the nutritive effects of food upon the animal are varied by numberless causes, such as the animal's power of digestion and appropriation, its condition, shelter, air, water, exercise, \&c. But all else being equal, the nutritive qualities of the articles mentioned are in the above proportions.

The results of numerous experiments, reported by individuals and Agricultural Associations, show, that each 100 lbs. of live weight of the animal requires of hay or its equivalent, per day, as follows :-
Working horsea......................................................... 3.08 lbs.



In the ox, the daily loss of muscle or tissue requires that he shonld consume 20 to $2 t$ ounces of gluten or albumen, which will be supplied by any of the following weights of vegetable food:-

| Meadow hay. | 20 mb | Turnips.. | 120 lbs |
| :---: | :---: | :---: | :---: |
| Clover hay. | 16 | Cabbage. | 70 |
| Oat straw. | 110 | Wheat or other white grain. | 11 |
| Pea straw | 12 | Beans or peas. . . . . . . . . | 6 |
| Potatoes. | $60 \quad$ - | Oil cake................... | 4 " |
| Carrots.. | 70 4 |  |  |

Or instead of any one of these, a mixture of several may be given with the best results. But if the due proportion of nitrogenons food be not given, the ox will lose his muscular strength and will generally fail. So with growing and fattening stock of every description; the proportion of each of the kinds of food required by the animal must, in practice, be adjusted to the purpose for which it is fed.

It is not strictly correct that this or that kind of vegetable is more fitted to sustain animal life simply becanse of the large proportion of nitrogen or gluten it contains; it is wisely provided, however, that, along with this nitrogen, all

[^4]plants contain a certain proportion of starch or sugar, and of saline or eartly matter-all of which are required in a mixture which will most easily sustain an animal in a healthy condition; so that the proportion of nitrogen in a substance may be considered as a rough practical index of the proportion of the more important saline and earthy ingredients also.

Table, showing the effects produced by an equal quantity of the following substances, as food for sheep.

| Lbs. | Designation. |  | Increased weight of <br> living animal in <br> Lbs. | Produced <br> Wool. <br> Lbs. | Produced <br> Tallow. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Lbs. |  |  |  |  |  |

Note.-The above are the results of numerons experiments by De Raumer.


## DECREASE AND EXPECTATION OF LIFE.

Table, showing the decrement and expectation of human life.

| ́ㅜㄴ |  |  |  | 4 |  |  |  | U |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| At birth, | 4893 | 1264 | 28.1: | 34 | 1752 | 38 | 30.24 | 68 | 77. | 37 | 12.43 |
| 1 | 3629 | 27.1 | , | 35 | 17.37 | 35 | 23.22 | C9 | 735 | 37 | . |
| 2 | 3355 | 188 | ${ }^{\prime \prime}$ | 36 | 1702 | 55 | " | 70 | 608 | 37 | 10.03 |
| 8 | 3167 | $1: 3$ | 4 | 87 | 1667 | 35 | " | 71 | 601 | 37 | 10.08 |
| 4 | 3035 | 84 | " | 38 | 1632 | 3.5 |  | 72 | 624 | 37 | ${ }_{6}$ |
| 5 | 2951 | 58 | $40.8{ }^{\circ}$ | 39 | 1597 | 35 | c | 73 | 5 S7 | 37 | 16 |
| 6 | 2893 | 65 | 6. | 4.) | 1562 | 35 | 26.04 | 74 | 549 | 37. | ${ }^{6}$ |
| 7 | 2838 | 47 | - 6 | 41 | 1527 | 35 | ${ }_{6} 6$ | 73 | 611 | 37 | 7.83 |
| 8 | 2791 | 40 | ${ }^{6}$ | 42 | 1492 | 35 | ' | 76 | 474 | 37 | . |
| 9 | 2751 | 35 | ${ }^{4}$ | 43 | 1457 | 35 | ${ }_{6}$ | 77 | 437 | 37 | " |
| 10 | 2.15 | 28 | 39.25 | 44 | 1423 | 31 | " | 78 | 400 | 37 | ${ }^{4}$ |
| 11 | 2:87 | 27 | + | 4.) | 1396 | 27 | 23.92 | 79 | 31:3 | 37 | " |
| 12 | 2660 | 27 | * | 46 | 1869 | 27 | 4 | 80 | 326 | 35 | 5.85 |
| 13 | 2163 | 27 | " | 47 | 1342 | 27 | ${ }_{6}$ | 81 | 2.1 | 34 | 4 |
| 14 | 2606 | 27 | " | 48 | 1315 | 27 | - | 82 | 2.77 | 34 | 4 |
| 15 | 2579 | 42 | 36.10 | 49 | 1810 | 27 | ${ }^{\prime}$ | 83 | 223 | 31 | " |
| 16 | 2537 | 43 | 30.1 | 50 | 1288 | 27 | 21.16 | 81 | 1-9 | 34 | " |
| 17 | 2494 | 43 | 4 | 51 | 126I | 27 | * | 85 | 155 | 21 | 4.57 |
| 18 | 2451 | 43 | " | 62 | 1234 | 27 | " | 86 | 134 | 21 | 4.5 |
| 19 | 2408 | 43 | " | 63 | 1207 | 87 | " | 87 | 113 | 21 | " |
| 20 | 2363 | 43 | 34.21 | 54 | 1180 | 27 | " | 83 | 92 | 20 | 4 |
| 2 I | 2322 | 42 | 46 | 55 | 1153 | 27 | 18.25 | 89 | 72 | 20 | " |
| 22 | 2280 | 42 | ${ }^{16}$ | 66 | 112 i | 27 | 18. | 90 | 52 | 8 | 3.73 |
| 23 | 2238 | 42 | 1 | 57 | 1099 | 27 | * | 91 | 44 | 7 | " |
| 24 | 21.96 | 42 | " | 68 | 1072 | 27 | ${ }^{\prime}$ | 92 | 37 | 7 | " |
| 25 | 2154 | 40 | 32.32 | 69 | 1045 | 27 | " | 93 | 30 | 7 | ' |
| 26 | 2114 | 38 | , | 60 | 1018 | 27 | 15.43 | 91 | 23 | 7 | " |
| 27 | 2076 | 38 | 6 | 61 | 991 | 27 | 6. | 95 | 16 | 6 | 1.63 |
| 28 | ¢038 | 38 | * | $(2$ | 964 | 27 | * | 96 | 10 | 5 | ${ }^{\prime \prime}$ |
| 29 | 2000 | 38 | ${ }^{4} 4$ | 63 | 937 | ¢7 | ${ }^{6}$ | 97 | 5 | 3 | " |
| 30 | 1962 | 38 | 30.24 | 01 | 910 | 27 | " | 98 | 2 | 1 | " |
| 31 | 1924 | 38 | .6 | c5 | . 883 | 37 | 12.43 | 93 | 1 | 1 | " |
| 32 | 1886 | 38 | ${ }^{6}$ | 66 | 846 | 37 | , |  |  |  |  |
| 33 | 1848 | 38 | " | c7 | 809 | 37 | " |  |  |  |  |

The above table, originally compiled by Dr. Wiggleworth, of New England, after many years of careful observation and statistical research, exhibits the average yearly decrease
of life out of a given number born, and the expectation of reaching a certain age deduced from that decrease as the datum. Among the many similar tables that have been constructed, it is perhaps the most accurate. It received the cautious scrutiny and revision of the Supreme Court of Massachusetts, and was adopted by it (see E'asterbrook vs. Ilopgood, 10 Mass. Reports, 313) as the rule in estimating the value of life estates.

Explanation.-Opposite the age of the individual, under the column headed "Expectation of Life, \&c.," will be found the additional number of years he may reasonably expect to live. Thus a man 40 ycars of age may reasonably expect to live 26.04 years longer.

For the purpose of comparison with observations in Europe, St. Maur's Table is subjoined, taken from observations in Paris and the country around it.

St. Maur's Table.
Of 24,000 born


| 544 |  | , |  |
| :---: | :---: | :---: | :---: |
| 8,770 | " | " 35 | " |
| 7,729 | " | " 40 | " |
| 7,008 | " | " 45 | " |
| 6,197 | " | " 50 | " |
| 5,375 | " | " 55 | " |
| 4,564 | " | " 60 | " |
| 3,450 | " | " 65 | * |
| 2,544 | " | " 70 | " |
| 1,507 | " | " 75 | " |
| 807 | " | " 80 | " |
| 291 | " | " 85 | " |


| 103 | attain |  |  | years. |  | ttain |  | 96 | years. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 71 | " | " | 91 | " | 18 | " | * | 97 |  |
| 63 | " | * | 92 | " | 16 | " | " | 98 | 6 |
| 47 | " | * | 93 | " | 8 | " | " | 99 | /6 |
| 40 | " | " | 94 | " | 6 or 7 | " | ' | 100 | " |
| 33 | " | " | 95 | " |  |  |  |  |  |

Explanation.-To ascertain by the above table what probability there is that a man of a given age will attain to any other age, make the number opposite the latter age the numerator and the number opposite the former age the denominator, and the fraction will express the probability sought for.

Example.-What probability is there that a man of 30 will attain the age of 70 years?

Solution.-Opposite 70 find $2,544=318$

$$
" 30 \backsim \overline{9,544}=\overline{1193} \text { Ans. That is }
$$ to say, he has 318 chances out of 1193 of living to 70.

## COMPOUND INTEREST.

Table, showing the amount of $\$ 1$ for any number of years from 1 to 24 , at 5 and 6 per cent., compound interest.

| Years. | 3 per cant. | 6 per ceat. | Yeara. | 5 per eent. | 6 per cent. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1.05 | 1.06 | 13 | 1.88564 | 2.13292 |
| 2 | 1.1025 | 1.1236 | 14. | 1.97993 | 2.26090 |
| 3 | 1.15763 | 1.19101 | 1.5 | 1.0i892 | 2.3965 .5 |
| 4 | 1.21550 | 1.26247 | 16 | 118287 | 2.54035 |
| 5 | 1.27628 | 1.33822 | 17 | 1.29201 | 2.69277 |
| 6 | 1.34009 | 1.41851 | 18 | 1.416611 | 2.8543 .3 |
| 7 | 1.40710 | 1.641363 | 19 | 1.52695 | 3.01559 |
| 8 | 1.47745 | 1.59384 | 20 | 1.6:329 | 3.20713 |
| 9 | 1.55132 | 1.68947 | 21 | 1.78 .596 | 3.39956 |
| 10 | 1.62889 | 1.79084 | 22 | 1.92526 | 3.60353 |
| 11 | 1.71083 | 1.89829 | 23 | 1.07152 | 3.81974 |
| 12 | 1.79585 | 2.01219 | 24 | 1.2:509 | 4.04893 |

Explanation.-Opposite the number of years in the column under the rate per cent., will be found the amount of $\$ 1$, with the componnd interest included for the time given. Shonld the amount of any given sum with the compound interest at a given rate per cent. for a given time be required, multiply the amount found in the column under the given rate per cent., and opposite the given time, by the sum at interest so given, and the product will be the answer.

Example.-What will be the amount of $\$ 150$ at compound interest at the rate of 5 per cent. for 10 years?

Solution.-1.62889 $\times 150=\$ 244.33 .35$. Ans.

## ANNUITIES.

Table: showing the present worth of $\$ 1$ annuity at 5 and 6 per cent. compound interest for any number of years from 1 to 34.

| Yoar. | ${ }^{6}$ per ceuth. | 6 per ceus. | Yeara. | \% per cent. | $\mathrm{G}_{\text {per ceat }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 0.95238 | 0.94339 | $18^{\circ}$ | 11.68958 | 1082760 |
| 2 | 1.8:941 | $1.83: 339$ | 19 | 12.08532 | $11.15 \times 11$ |
| 3 | 2.72325 | 2.67:01 | 20 | 12.46221 | 11.46992 |
| 4 | 3.54 .95 | 3.46 .110 | 21 | 13. 2.4115 | 11.76407 |
| 5 | 4.3948 | 4.21236 | 2. | 13.16300 | 12.104158 |
| 6 | 5.07569 | 4.91732 | 23 | 13.48807 | 12.30338 |
| 7 | $5.7 \times 1.37$ | 5.58:38 | 24 | 13.79864 | 12.5.7135 |
| 8 | 6.46321 | 6.20979 | 25 | $14.098: 94$ | 12.783335 |
| 9 | $7.107 \times 2$ | 6.80169 | 26 | 14.37518 | 13.00316 |
| 10 | 7.72173 | 7.3608 | 27 | 14.64303 | 13.21053 |
| 11 | 8.30641 | $7.88 \mathrm{CB7}$ | 28 | 11.89813 | 13.40516 |
| 12 | 8.86325 | 8.38384 | 29 | 15.14107 | 13.59172 |
| 13 | 9.393 .57 | 8.85-68 | 30. | 15.37245 | 13.76483 |
| 14 | 9.89864 | 9. 29.9493 | $31^{\circ}$ | 15.59:81 | 13.929118 |
| 15 | 10.37966 | 9.71225 | 32 | 15.86268 | 14.083 .18 |
| 16 | 10.8377 | 10.10589 | 33 | 16.00255 | $14.2 \% 917$ |
| 17 | 11.27407 | 10.47726 | 34 | 16.19299 | 14.36613 |

For explanation and example see Compound Interest above.
For convenience in finding the interest from one to $\$ 5000$ from one to 2000 days, at 6 or 7 per eent., we give the following

| 8 | $1 \mathrm{da}^{\prime}{ }^{2}$ | 3 | 4 | 5 | 6 | 7 | s | 9 | 10 | 20 | 60 | 40 | ¢0 | 60 | 70 | \$0 | 90 | 166 | 260 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |  |  | 8 | . 0108 | .0112 | . 012 | . 013 | . 115 |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  | . 011 |  | . 014 |  |  |  |  |
| 2 |  |  |  |  |  |  |  |  |  |  | . 012 |  | . 019 |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  | .n1\% | . 15 | . $2 \times$ | . 02 | . 81 | . 035 | . 049 | . 045 | . | 10. |
|  | . 001. | . 02 |  | vo3 | . 0 |  | 4.005 | 5.005 | 5.006 | . 012 | . 017 | . 023 | . 029 | . 35 | . 041 | . 04 | . 052 | . 05 | 1 |
|  | . 001. |  |  | . 00 |  |  |  | .006 | . 00 | .n13 | . 02 | . 024 | . 035 | . 042 | . 04 | .c53 | , 66 | . 667 | . 183 |
|  | . 001. | , |  | . 00 | . 00. |  | .00 | . | . 00 | . 016 | . 223 | . 031 |  | . 046 | . 154 | . 062 | . 076 | . 678 | . 15 |
|  | . 001 |  |  | . |  |  |  | .00\% | 108 | . 014 | . 025 | . $03 \%$ | .r42 | . 050 | . 058 | . 067 | . 0 Ts | . 08 | . 16 |
|  | . 001. |  |  |  |  |  |  |  |  | . 019 |  | . 038 |  | . 058 | .(688 |  |  |  | 184 |
|  | . 001. |  |  |  |  |  |  | 8.009 | . 110 | . 0.0 | . 036 | . 040 | . 050 | .060 | .a70 | 1 | . 090 | . 106 | . 200 |
|  | . 001. |  |  | .096 | 6.107 | .008 | .0n9 | 9.10 | 0.012 | . 023 | . 035 | . 047 | . 058 | . 07 | . 082 | .(93) | . 105 | . 117 |  |
|  | 1. |  |  |  |  |  |  | . | 0.012 | . 023 | . 035 | . 04 | . 68 | . 17 | . 08 | . 093 | . 105 | . 117 |  |
|  | . 01. |  |  |  | . 018 |  |  |  |  | . 027 | . 041 | . 054 | . 068 |  | . 095 |  |  |  | . 27 |
|  | 01. |  |  | 5.07 | , | 1 |  |  |  | . 227 | . 040 | .053 | .067 | . 080 |  | . 107 | . 120 | .138 |  |
|  | . 022. |  | 6 | . | . 009 | . 011 | 1.012 | 2. 014 | 16 | . 031 |  |  |  |  | . 109 | 24 |  | . 15 |  |
|  | . 001. |  | On6 | . 0 |  |  |  |  | . 017 |  | .045 | .060 | . 087 | , | ${ }^{.} 1105$ | .140 | . 135 | 175 | , |
|  | 2. |  |  |  |  |  |  | , | . 017 | .033 | . 050 | .067 | . 083 | . 100 | . 117 | . 183 | . 150 | . 167 |  |
|  | .002- |  |  |  |  |  |  |  |  | . 039 | . 05 | . 078 | . 097 | . 117 | . 135 | . 156 | . 175 | 19 | . 389 |
|  | $0083 .$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

$.300 / .350-400 \quad .450 \quad .50075 .000$

| ¢ ${ }_{\text {c }}$ |
| :---: |
|  |  |


|  |  |  |  |  |  |  |  |  |  |  | . 100 | 0 | . 2 ก |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | . 1 | . 01 |  | . 112 | .124 |  |  | 47 | . 0 | 8 | .117 | . 175 | . 238 |
|  | . 0107 | . 11 |  |  |  |  |  |  |  |  | . 133 | . 200 | . 267 |
|  | . 008 | . 01 | 23 | .131 | .1889 | .1)47 | .154 | . 1.62 |  | . 078 | . 156 | . 233 | . 311 |
|  |  |  |  | .1 |  |  |  |  |  |  | . 167 | 250 | . 333 |
|  | . 0 | . 01 | 9 | . 039 | . 049 | . 1 | , 1 | , 178 | ,0 | . 097 | . 194 | . 292 | . 384 |
|  |  | . 01 |  | . 040 | . 1 |  |  | . 080 |  |  | . 2 | . 300 |  |
|  | . 012 | . 023 |  | . $04{ }^{\dagger}$ | . 058 | . 070 | .082 | . 1393 | . 105 | 117 | . 233 | .35i) | . 467 |
|  |  |  |  |  | . 058 |  |  |  |  |  | . 233 | 2511 | . 46 |
|  | . 0 | . 02 | 14 | . 1 | . 068 | .1182 | . 095 |  | . 1 | 186 | . 272 | . 41$) 8$ |  |
|  |  | . 027 |  | . 053 |  |  |  |  | . 12 | 3 | . 261 | 400 | . 533 |
|  | .016 | . 031 | 7 | . 062 | 0 | 193 | 110 | 124 |  | . 156 | . 311 | . 467 |  |
|  |  |  |  |  |  |  |  |  |  |  | .3า\%. | .45 |  |
|  | . 01 | . 035 | 52 | . 1771 | . 087 | 7.10 | . $12 \pm$ | . 140 | . 157 | 1 | . 3 | . 525 |  |
|  |  |  |  |  |  |  |  |  |  | 167 | . 333 | . 50 | . |
|  | . 019 | .133 | .05 | . 078 | . 0 | .11' | 13 | 156 |  | 194 | . 389 | . 58 | . 718 |
|  | .) | . 06 |  | . 133 |  |  |  | . 267 | . | 88 |  | 1.00 r |  |
|  | . 032 | .17\% |  | . 156 | 1 | 2 | 2 |  | . 35 | 8 | . 775 | 1.167 |  |
|  | . 050 | . 10 ? |  | 20 | 25 |  | 35? | . | . | . |  | 1.50 | 2.000 |
|  | .1588 |  |  | 233 | . 29 | 35: | 408 | .467 | . 525 | . 583 | 1.167 |  |  |
|  | 067 | 138 |  | . 267 |  | - 4 | . 467 | 533 | . 600 | 667 | 333 | - 0 On | $\underline{-20}$ |
|  | 078 | 156 | 233 | . 311 | . 389 | 9.467 | . 544 | 622 | . 700 | . 77 | 1.556 | 2.8 | 3.1 |
|  | . 083 | . 167 |  | . 333 | 4 | . 500 | . | 607 | 750 | 833 | 1.667 |  | . 85 |
|  | 997 | 194 | 4 | 389 |  | 583 |  |  |  |  |  |  |  |



| CENT., |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { 苛 } \\ & \text { 㫛 } \end{aligned}$ | DATE IN THE MONTA. |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  | $2{ }^{2} 13$ |  |  |  |  | 8 | 9 | $1-10$ |  |  |  |  |  | $1{ }^{16}$ |  | ${ }^{18}$ | ${ }^{8}{ }_{-}^{19}$ | $\left.{ }^{\mathbf{y}}\right\|^{-1}$ |  | ${ }^{1}$ | ${ }^{2}$ | $23{ }^{2}$ | 24 2.25 | 26 ${ }^{21}$ | $\|l\| l \mid l_{-\overline{4}}^{-8}$ |  | ${ }^{30}$ | ${ }^{30}$ |
| 2 |  | 0 | 0 |  |  |  | 0 | 0 | 1) $\begin{aligned} & 0 \\ & 0\end{aligned}$ |  |  |  |  | 0 |  |  | 0 | $\begin{array}{lll}0 & 0 \\ 1 & 1\end{array}$ | 0  <br> 1 1 <br> 1  |  | $\begin{array}{ll}11 \\ 1 & 1 \\ 1\end{array}$ | 10 | $\begin{array}{ll}0 \\ 1 & 1 \\ 1\end{array}$ | $\begin{array}{ll}11 \\ 1 & 1\end{array}$ | 0 1 <br> 1 1 | 0 0 <br> 1 1 |  |  |  |
| 3 | - | 0 II | $\checkmark$ | 0 | 0 |  | 0 | 0 | 0 |  |  |  | 1 | 1 |  |  | 11 | 11 | 1 |  | 1.1 | 11 | 1 | 11 | 11 | 11 |  |  |  |
| 4 | ${ }^{-1}$ | 110 | 0 | 0 | - |  | , |  |  |  |  |  |  |  |  |  | 1 | 1.1 | 1. |  | 1. | 1. | 1.2 | 2 | 2 ! | 2 |  | 2 | 2 |
| 5 | - | 0 | 1 | 0 | 1 |  |  |  |  |  |  |  |  |  |  |  | 1 | $1{ }^{1} 1$ | 1 |  |  | ? 2 | 2 | 22 | 2. |  |  | 2 : |  |
| 6 | 0 | $\begin{array}{lll}0 & 0 \\ 0 & 0\end{array}$ | 0 |  |  |  | 1 |  |  |  |  |  |  |  | 12 |  | 2 | $2{ }^{2} 4$ | 2 |  | 2 | $\begin{array}{ll}2 \\ 2 & 2\end{array}$ | 2 3 | $2{ }^{2} 2$ | 2 |  |  | 38 |  |
| 8 | 0 | $\begin{array}{lll}0 & 0 \\ 0 & 0\end{array}$ | 1 |  |  |  | 1 |  |  |  |  |  |  |  |  |  | 2 | 2 2 | $2{ }^{2}$ |  |  | 3 | 3 | 3  <br> 3 3 <br> 3 3 | 3 3 |  |  |  |  |
| 9 | 0 | 110 | 1 | 1 | 1 |  | 1 | 1 | 121 |  | 2 |  | 2 |  | 2 | 2 | 33 | $3{ }^{3} 3$ | 3 |  | 3 | 3 3 | 3 | 4 4 | 44 | 44 |  |  | 5 |
| 10 | 0 | 01 | 1 | 1 | 1 | 1 | 1 | 2 | 22 | 2 | 2 |  | 2 | 2 | 2 | 3 | 3 | 33 | 3 - |  | 34 | 4. | 4 | 44 | 44 | 45 |  | 55 | 5 |
| 20 | , | 11 | 1 |  | 2 | 2 | 3 | 3 | 3 | 4 |  |  | 5 | 5 | 5 | 6 | -6 | 6 fid | 87 |  | $7{ }^{7}$ | 78 | 8. | ${ }^{+} 8$ | 8 ! | 9.9 | 10 | 11 | 111 |
| 30 | 1 | 11 | 1 | 2 | 2 | 3 | 4 | 4 | 45 |  | 6 | 7 | 7 | 8 | 88 | 9 | 9 | 910 | 0.10 |  | 111 | 112 | 1212 | 1213 | $131:$ | 1414 |  | 515 |  |
| 40 | 1 | 12 | 2 | , | 4 | 5 | 55 | 6 | 67 | 7 | 8 | 9 | 9 | 10 | 11 | 11 | 12 | 213 | 313 | 14 | 415 | 515 | 1510 | 1617 | 1717 | 1819 | 19 | 920 | 20) 21 |
| 60 | 1 | 23 | 3 | 4 | 5 | I | 7 | 8 | 8 | 9 | [11 | 11 | 12 | 13 | 13 | 14 | 415 | 516 | 6.17 |  |  | $\checkmark 15$ | 19.24 | 24.31 | 122 | $\leq 323$ | 24 | 4 2: |  |
| 60 | 1 | 2.3 | , | 5 | 6 | 7 | 8 | 8 9 | 910 | 11 | 12 | 13 | 14 | 15 | 11 | 17 | 1 s | $\times 19$ | 9 20 |  | 122 | 22 | 23.2 | 24.25 | 25.21 | 4728 | 29 | 31 | 313 |
| 70 | 1 | 23 | 5 | 6 | 7 | 8 | 89 | 11 | 1112 | 13 | 14 | 15 | 16 | 17 | 19 | 211 | $\cdots 1$ | 122 | 223 |  | 426 | 627 | 27 | 2 - 29 | 293. | 1133 | 34 |  | 351 |
| 80 | 1 | 34 | 5 |  | 8 |  | 11 | 112 | 213 | 15 | 16 | 17 | 19 | 20 | 21 | 23 | 21 | 125 | 25.27 |  | + 25 | 931 | 313 | 32 33 | 33 3: | 3637 | 39 | 94 | 414 |
| 90 | 2 | $3{ }^{5}$ | 6 |  | 9 | 11 | 112 | 13 | 315 | 16 | 1- | 19 | 21 | 2: | 24 | 25 | 27 | 728 | 8 3) | 31 | $313:$ | 335 | 353 | 3 C 38 | $38: 33$ | 41 4\% | 44 | 445 |  |
| $101)$ | 2 | $3{ }^{3} 5$ | 7 |  | 10 | 12 |  | 1.5 | 5 17) | 18 | 20 |  | 23 |  | 27 |  |  | 0\|32 | 32-33 | $3:$ | 3, 37 | 7\% | -8 41 | 41042 | 42 4 4: | 4.347 |  | 8.50 | 0 \| 5 |

[^5]| 5 |  <br>  |
| :---: | :---: |
| $\underset{\sim}{\oplus}$ |  <br>  |
| $\underset{6}{6}$ |  <br>  |
| $\dot{y}$ |  <br>  |
| $\underset{68}{m}$ |  <br>  |
| $\underset{\sigma \theta}{a j}$ |  <br>  |
| $\underset{\infty}{\underset{A}{B}}$ |  <br>  |
|  |  |
| $\dot{\otimes}$ |  <br>  |
| $\stackrel{\infty}{\infty}$ |  |
| $\dot{\sim}$ |  <br>  |
| $\stackrel{\sim}{\circ}$ |  <br>  |
| \% |  <br>  |
| $\dot{\leftrightarrow}$ |  <br>  |
| \% |  |
| 8 sfug |  |

Table continued.

| 咼 | \$18. | \$19. | \$20. | \$21. | \$22. | \$23 | \$24. | \$25. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 69 | 73 | 77 | . 81 | 84 | 88 | 92 | . 96 |
| 2 | 1.38 | 1.46 | 1.51 | 1.62 | 1.70 | 1.77 | 1.84 | 1.92 |
| 3. | 2.18 | 2.19 | 2.31 | 2.43 | 2.54 | 2.65 | 2.74 | 2.88 |
| 4 | 2.77 | 2.92 | 3.08 | 3.23 | 3.38 | : . 54 | 3.70 | 3.85 |
| 6 | 3.16 | 3.65 | 3.85 | 4.64 | 4.24 | 4.42 | 4.62 | 4.81 |
| 6 | 4.15 | 4.38 | 4.62 | 4.85 | 5.08 | 6.31 | 5.54 | 5.77 |
| 7 | 4.8. | 5.12 | 5.38 | 5. 65 | 5.93 | 6.19 | 6.46 | 6.73 |
| 8 | 5.34 | 5.85 | 6.16 | 6.46 | 19.76 | 7.08 | 7.38 | 7.69 |
| 9 | 623 | 6.58 | 6.93 | 7.27 | 7.162 | 7.9 i | $8.3)$ | 8.63 |
| 10 | 6.92 | 7.31 | 7.69 | 8.08 | S. 46 | 8.85 | 9.24 | 9.62 |
| 11 | 7.61 | 8.01 | 8.46 | 8.88 | 9.3) | 9.73 | 310.16 | 10.58 |
| 12 | 8.31 | 8.77 | 9.23 | 9.69 | 10.16 | 111.62 | 11.18 | 11.54 |
| 33 | 9.04 | 9.50 | 10.00 | 10.50 | 11.00 | 11.56 | 11.00 | 12.54 |
| 14 | 9.69 | 10.23 | 111.7 | 11.31 | 11.84 | 12.38 | 12.93 | 13.46 |
| 15 | $10 . \therefore 8$ | 10.96 | 11.54 | 12.12 | 12.70 | 13.27 | 13.84 | 14.42 |
| 16 | 11.08 | 1169 | 1\%.31 | 12.92 | 13.64 | 14.15 | 13.74 | 15.38 |
| 17 | 11.77 | 12.43 | 13.18 | 13.73 | 14.38 | 35.14 | 15.71) | 16.35 |
| 18 | 12.46 | 13.15 | 13.85 | 14.54 | 15.24 | 15.92 | 316.62 | 17.31. |
| 19 | 13. 15 | [13.88 | 14.2 | 15.35 | 16.08 | 16.81 | 37.54 | 18.27 |
| 21 | 13.85 | 14.62 | 17.38 | 16.15 | 16.92 | 17.69 | 18.46 | 19.23 |
| 21 | 14.54 | 15.35 | 15.16 | 16.96 | 17.76 | 38.58 | 19.38 | 20.19 |
| 22 | 15.23 | 16.118 | 16.42 | 17.77 | 18.61 | 19.46 | 20.30 | 21.15 |
| 23 | 15.92 | 16.81 | 17.69 | 18:58 | 19.45 | 20.35 | 21.24 | 2.11 |
| 24 | 16.62 | 17.54 | 18.46 | 19.38 | 20.31 | 21.23 | 22.16 | 2:.08 |
| 25 | 17.31 | 18.27 | 19.23 | 20.19 | 21.16 | 2213 | 23.18 | 24.04 |
| 26 | 18.00 | 18.00 | 20.011 | 21.01 | 22.40 | 2300 | 24.01 | 2 i .00 |

Explanation.-The column on the left hand of the table shows the number of days: and the rate per month is seen at the top of the page.

Example.-To find the amount of 19 days' work, at $\$ 11$ per month : find 19 in the column of days; then move to the right, on the same line, till you come under $\$ 11$ (rate per month), and you find $\$ 8.04$-the answer.

In all cases, the amount will be found directly under the price per month, and at the right of the given time. .

In this table, the wages are cast at 26 working days per
month. For a fraction of a day, take an equal part of the amount for one day, and for rates less than $\$ 3$ per month, half what is shown for twice the amount.

Should it be desired to ascertain the wages per day for any given sum per montl above $\$ 25$, it ean be done by adding to or donbling the above amounts. Thus for $\$ 30$ per month, take 20 and 10 in the above table and add them; for $\$ 37$ per inonth, take 20 and 10 and 7 , and add them; for $\$ 50$, take 25 and double it; for $\$ 75$ per month, take 25 and triple it, \&c.

## KEEPING ACCOUNTS.

Blank account books, designed for keeping simple ledger accounts, are generally of two kinds, viz. : Those in which the $D r$. and $C r$. sides of the account are on the same page, and those in which they are on opposite pages. We give below samples of each, with the mode of keeping the account.


> Form of a Bill of the foregoing. WILLIAM WILSON, Dr.
> 1861. In Account with THOMAS BUNN, Cr.
> January 12, To 18 bus. potatoes, at 50 cts........ $\$ 900$
> " 20 , " 1 ton hay, at $\$ 8 \ldots . . . . . . . . .$.
> February 7, " 1 yoke steers ....................... 8000
> " 20 , " 30 bus. oats, at $30 \mathrm{cts} . . . . . . . .$.
> Mareh 5, " 40 bus. corn, at 50 cts. . . . . . . . . . . 2000
> June $7, \quad$ " 3 cords wood, at $\$ 250 \ldots . . . \ldots$.... 750
> 1861
> Cr.
> $\$ 13350$

Jantary 25, By cash on account. . . . . . . $\$ 1000$
Feb'y 15, " 2000 ft . lumber, at $\$ 10 \mathrm{M} 2000$
April 3, " 1 pair boots for Sam... 400
" 10, " 50 lbs. sugar, at 8 cts.... 400
May 12, " 10 lbs. coffee, at 15 cts.. 150
June 20, "cash on account........ $5000 \quad 8950$
July $\quad 1$, To balance....................... $\$ 4400$
Note.-Since the whole science of book-keeping rests upon charges and credits, if you, once for all, get what is a charge and what is a credit clearly fixed in your mind, and fully understand when you ought to charge and when you ought to credit, you will have little difficulty in keeping your accounts straight, simple, and satisfactory.

When you let your neighbor, or he with whom you deal, have anything from you, it is a charge against him, and you must charge him with it on the debit side of the account; but whenever you receive anything from him, it is a credit, and you must credit him with it on the credit side of the
account. Thus yon "charge" for what you give, and "credit" for what you receive. He with whom you deal does likewise-charging you with what he gives you, and crediting you with what he receives from you. Hence his charges against you will correspond with your credits to him, and his credits to you will correspond with your charges against him.

In like manner, should it be desired to keep an account with a certain field, or meadow, or cow, the name is entered at the top of the page and in the indlex, just as an individual's, and what you give to it, the labor it costs you, \&c., you charge to it, and what it yields you you credit to it. In this way a farmer can keep an account with cach of his fields or altogether, with cach of his cows or with the herd, with each of his pigs or altogether, with each of his sheep or witl the whole flock, \&c.

The word "To" prefixed to an entry indicates a charge or debit; the word " $B y$ " indicates a credit.

Each entry should be made on the day the transaction took place.

The account should be cast and balanced at least once every six months, and if not settled the balance brought down, as above, when the account may be continued.

## BOOK-KEEPING BY DOUBLE ENTRY.

Book-keeping by double entry is that form of keeping accounts in which two entries are made in the Ledger for
every one in the Day-Book; one a charge, or debit, and the other a credit. Thus you not only eharge the party who receives from you, but you eredit that department of your business from which, whatever it is, is reeeived. You keep an account with as many different departments of your business as you deem neeessary. A farmer might keep an account with his herd, with wheat, rye, corn, grass, has, and other crops, or different fields, separately or together, under the head of "Farm." Where the time required can be spared, we think it desirable to keep accounts by donble entry with every department of a business, down to a very minute detail, because where books are kept by this system, you can turn to any account and ascertain at a glance its condition; that is, how much money you have spent on it, and how much it has retmrned yon, and what balance is for or against it. The books neeessary to be used in keeping accounts by this system are two, the Day-Book and Ledger. A third, called a Journal, is sometimes used intermediary between the Day-Book and Ledger; but we eonsider it much more trouble than benefit, and therefore think best entirely to dispense with it.

The Day-Book is ruled with two dollar and eent eolumns on the right hand side, and one column on the left hand side, in which the page of the Ledger is entered when the account is transferred to the Ledger.

The Ledger is generally ruled, as in the example given below; the name of the aceonnt is written across the top of
the page, and if the transactions will probably be numerous other pages following may be reserved to continue the account upon when the first page is full.

It is customary with a person keeping books by this method to have an account with "Cash"," with his family, and if he takes and gives notes, with "Bills Receivable," and "Bills Payable." We will give below a sample of transactions entered in the Day-Book and carried to the Ledger. If I sold, October 1st, to John Brown, tweenty bushels of apples, at 75 cents per bushel, and was to deliver them to him for ' $\$ 1$, and on October 5 th, bought of him five barrels of flour, for family use, at $\$ 4$ per barrel, which he was to deliver gratis, my entries in the Day-Book would be as follows, supposing I kept accounts with the departments mentioned :-

Cemterville, Ocr. Ist, 1861.


The Ledger accounts of the above would be as follows :Page 5. Dr.

JOHN BROWN.
Cr.

|  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Octuber | 1 | : | 1 | 600 | Oc |  |  |  |  |  |


| Dr. |
| :--- |

Page 6.


Page 10.

| Dr. | FAMILY E | EXPENSE. | $c r$. |
| :---: | :---: | :---: | :---: |
| $\begin{array}{r\|l\|} \hline 1 \times 61 . & \\ \text { Oct. } & 5 \\ & \end{array}$ | $1\\|20 \mid 00\\|$ | 11 | 1 |

In the Day-Book, in the right hand dollar and cent column, the credits are entered ; in the left hand, the debits, as shown.

In the Ledger, the half of the page to the left of the centre is devoted to debits ; to the right, to credits. The column to the left of the dollar and cent column in the Ledger is where the page of the Day-Book from which the entry is taken is noted.

The form which we have given above is, perlaps, the simplest in which books can be kept by double entry, consequently the best. No difficulty will be experienced in this system of keeping books, after one has already fixed in his mind what is a charge or debit, and what is a credit, as explained above. Some remarks may not, however, be unne-
cessary in this connection, to show what to credit and what to charge, under certain circumstances. If you give a man a note for the balance of his account, you debit his account and credit Bills Payable. When you pay the note, you debit Bills Payable and credit Cash. If you receive a note for balance of account, you credit the man's account and debit Bills Receivable. When the note is paid, you credit Bills Receivalle and debit Cash. In the first entry in the above example, it may be well to say, yon do not give credit to the man who drives the wagon, or to the wagon for its use. These are legitimate clarges against Teaming. At the proper time you credit the man his wages, and charge or debit Teaming for it (or that portion of his time in which he has been engaged teaming), \&c.

Some businesses require an Interest account to be kept; of course, from our previous remarks, any one who finds it necessary will see the proper way to keep it.

It is necessary, in connection with the Day-Book and Ledger, to keep a Cash-Book and Bill-Books, where a person does a credit business. The Cash-Book, to keep a record of the receipts and disbursements of cash, which should be balanced every night (if any cash has been spent or received during the day), and the money counted; the balance on hand and the balance shown by the book should correspond; if they do not, something has been omitted. If you have on liand more than the balance calls for, you have received money. which has not been entered on the debit side of the
acconnt. If you have too little, you have spent money for which the account has not been credited.

The Bill-Books are to keep a record of notes received and notes paid out. The Bills Payable book records the following facts: The date of the note, the time it is to run, the date of falling due, to whom it was given, in whose favor it was made, and the amount it was made for. The Bills Receivable book records: Who made the note, in whose favor it was made, how long it has to run, when it is due, and the amount it is for. When notes are paid or received, these facts should, of course, be properly noted in the DayBook.

When accounts are first opened it is best to take an inventory of property of all kinds on hand, charging each department with which you intend to keep an account with that portion which it requires, and crediting an account for the same which shall represent all your "Stock in 'Trade." This account is usually called "Stock." Then, at the time you wish to close up your accounts to ascertain your profits and losses, you take another inventory, and give your departinental accounts credit for what property they have on hand, charging the general stock account for the same; the balance of this account ( $i$. e., the difference between the footing of the debit and credit columns) then shows how much more or less property you have on hand than when yon commenced business. If the credit side exceeds the debit, of course yon have more property; and if the debit
exceeds the credit, of course you have less than when you began. Then the balance of eacl departmental account (all proper clarges having been entered, and its share of property on hand credited) will show how much it has made or lost. These balances are then usually carried to a general account, called "Profit and Loss;" those having a credit balance are charged that amount, and Profit and Loss is credited; and those having a debit balance are credited that amount, and Profit and Loss is charged for it. This being done with the Departmental accounts and the General Stock accounts, with the Cash accounts, and the Bills Payable and Bills Receivable aceounts, and Profit and Loss having been also charged for bad debts-and the parties owing them having been credited therefor-the balance of that account shows the Profit and Loss of the business. `Some parties do not credit the accounts of persons who owe bad debts, and charge Profit and Loss; but, after making up the Profit and Loss account, draw it off on a sheet of paper, and account for them there. Others open an account called "Suspense," to which they credit the amount of the several bad debts (specifying them in the Day-Book), and charge Profit and Loss. This method prevents the accounts of bad debtors appearing closed on your Ledger. After you have made up your books as directed, it is best to make a balance sheet, which will show at a glance what departments have made money, what lost, who owes you, and who yon owe. After this, the several departments should be charged back again
with the property with which they are to commence the next year's business, and the stock account credited therefor, and you are ready to begin again.

Trial balances of the Ledger should be made, say monthly. To make a trial balance, you foot up all the columns of figures in your Ledger, draw off the debits on one side of a sheet and add them together, and the credits on the other side of the shect and add them together. If the footings of the debit and credit columns thus obtained are the same, or, in other words, balance, your Ledger balances and is all right ; but if they do not balance but differ, your Ledger is in error, and you must go over it and find where the mistake is.

Of course there mnst be no entry made in your Ledger, unless it is also made in your Day-Book. The wording of the Day-Book must be as simple as possible and express all the facts.

Some book-keepers, when they enter from the Day-Book into the Ledger, write in the Ledger between the date column and the column of the Day-Book page the name of the account in the Ledger which receives the corresponding entry or entries; thus, in the entry above given they would write thus:-

Page 5.


This we think of no advantage, and it increases' the labor and trouble. When you render a bill from the account, you must necessarily turn to the Day-Book to ascertain the particulars, and the mere page of the Day-Book is sufficient for this purpose. The less aceounts are complicated the easier they are kept, and the less liable are mistakes to be made.

No erasures, scratching out, or interlineations should be suffered. If a wrong entry be made, or an entry made wrongly, let it be explained by a counter entry on the other side of the aecount, or overscored in such a manner that the mistake ean be seen. All erasures, blotting out, scratching, \&c., tend to throw suspicion upon the honesty of the account.

Buoks of "Original Entries" are only an aid of the memory, and he who keeps them should be able to swear that the entries were made on the day they purport to have been. He may not be able to recollect the various entries, but if it was lis invariable custom to make them on the day of the transaction, they stand in place of his memory-they are not, however, cvidence of the delivery of the goods.

Form of a Receipt in full.
New York, July 1st, 1861.
Received of Thomas Brown the sum of forty-four dollars, in fill of all accounts up to this date.
$\$ 4400$.
William Wilson.

Form of a Check.
$\$ 15000$.
New Yors, July 1st, 1861.
Please pay William Wilson, or order, one hundred and fitty dollars, and charge to the account of

Thomas Anderson.
To the Southold Savings Bank.
Form of a Due-Bill.
New York, July 1st, 1861.
Due William Wilson, or order, on settlement this day, one lumdred and fifty dollars. $\$ 15000$.

Thomas Anderson.
Form of a Promissory Note.
New York, July 1st, 1861.
Four months after date I promise to pay William Wilson, or order, one hundred and fifty dollars ; value received. $\$ 15000$.

Thomas Anderson.
Another form.
New York, July 1st, 1861.
On the 1st day of April next, I promise to pay William Wilson, or order, one hundred and fifty dollars; value received. $\$ 15000$.

Thomas Anderson.
Form of a Promissory Note with Surety.
New York, July 1st, 1861.
Sixty days after date, we, or either of us, promise to pay Willian Wilson, or order, one hundred and fifty dollars; value received. Thomas Anderson, (Principal.) $\$ 15000$.
John Jones, (Surety.)

Form of a Draft or Bill of Exchange.
$\$ 15000$.
Buffalo, July 1st, 1861.
Ten days after sight, pay Williau Wilson, or order, one hundred and fifty dollars, value received, and charge the same to account of

Yours, \&e., . Thomas Anderson.
To William Allen, New York.
Notes.-A due-bill bears interest from its date; a promissory note not until after it is due, unless so expressed on its face.

Negotiabiluty.-The words, " or order," "or bearer," are necessary to make a cheeck, a due-bill, a promissory note, a bill of exclange, \&c., negotiable ; that is, to enable the holder of it to trade and pass it to another.
When the words " or bearer" are introduced, the instrument may then pass from hand to hand, like a bank-bill, without endorsement; but when the words "or order" are used, the instrument must be endorsed by the original holder of it.

Endorsement.-Endorsing a note is writing your name across the back of it. Endorsements are of two kinds, an endorsement in blank or general endorsement, and a special endorsement.

An endorsement in blank is the original holder's simply writing lis name across the back of it. The succeeding holders of it may or may not, also, endorse it. If each or
any of them do, they also become severally bound for its payment.

A special endorsement is made by writing across the back of it, before endorsing it, the words, "Pay to the order of [name of party to whom it is passed]," which limits the payment of it to that party, or his orders, and so forth.

Acceptance.-When a draft or bill of exchange is made upon a third party (as in the above form), the latter is not in any way bound by it until he accepts it, which he does when it is presented to him for acceptance, by writing across the face of it the word " accepted," with the date, and signing his name thereunder. He is then a party to the bill, and bound for its payment at maturity.

Protest.-Protest is the notice required by law to be given to the endorsers of promissory notes, and the makers and endorsers of bills of exchange, of their dishonor, that is, of their non-acceptance or non-payment.

If the drawee, or person to whom a bill of exchange is directed, refuses to accept it on presentation, notice must be immediately given to the maker of it.

If he accepts it, and afterwards fails to pay it at maturity, notice must immediately be given to the maker.

If the maker of a promissory note fails to pay it at maturity, notice must immediately be given to all the endorsers.
A check is a draft at sight, and if not paid, must be protested.

It is a general rule that all guarantors of commerciai paper must be immediately notified of its-dishonor.
It is, of course, not necessary to protest a due-bill, or a promissory note, which is still held by the person to whom it was originally given.
When a note is made payable "on demand," it is necessary to make a demand before it will bear interest or can be sued for.

## U. S. BONDS.

Interest is calculated on U. S. bonds and on the public debt at 365 days to the year, and is due semi-annually. In England interest is calculated in the same way, and the legal rate is 5 per cent.

By Five-Twenties is meant the 6 per cent. gold-bearing bonds of the United States, which are to mature in 20 years, but which the Government, by giving due notice, can pay in gold any time after five years from the date of issue.

The old five-twenties were the first issued. They bear date May 1, 1862, and are redeemable after May 1, 1867, and payable May 1, 1882. The new "five-twenties" were . issued Nov. 1, 1864, July 1, 1865, and Nov. 1, 1865.

By Ten-Forties is meant the 5 per cent. gold-bearing bonds which are to nature in 40 years, but which may be paid by the Government at any time after 10 years.

By Seven-Thirties is meant a currency loan, which matures in 3 years, at which time they may be changed for the fue-twenty 7 per cent. bonds, bearing interest in gold. The name is derived from the zate of interest, it being 7.3 per cent. The "First series" bear date Aug. 15, 1864. The "Second series" bear date June 15, 1865, and are convertible June 15, 1868. The "Third series" bear date July 5, 1865. On this issue the Government reserves the right to
pay the interest at 6 per cent. in gold, instead of 7.30 per cent. in currency.

By Six per cents. of ' 81 is meant the 6 per eent. goldbearing bonds which cannot be redeemed by Government, except by purchase, until after maturity.

## RELATIVE VALUE OF GOLD AND CURRENCY.

To ascertain the value in gold of a "greenback" dollar or National curreney, at the different quotations of gold:

Rule.-Divide $\$ 1$ by the quoted value of $\$ 1 \mathrm{in}$ gold; the result will be the value of a dollar in currency.

Example.-When gold is 33 per cent. premium what is the value of $\$ 1$ in eurrency? $\$ 1.00 \div \$ 1.33=.7522$.
Nore.-In the following table the decimals are carried to mills and tenths of a mill.
Table, showing the greenback value of $\$ 1$ at the different quotations of gold. When gold is at
.01 pr. ct. prem. a greenback dollar is worth. . 99
.02................. . . . 9803
.03.................. . . . 9708
. 04 . . . . . . . . . . . . . . . . . 9615
.05 . . . . . . . . . . . . . . . . . 9523
.06.................. . . 9433
.07.................. . . . 9355
.08 . . . . . . . . . . . . . . . . 9259
.09................... . . . 9174
. 10
.11
.909
.9009
.12 pr. ct. prem. a greenback dollar is worth.. . 8929
.13................... . . 885
.14.................. . . . 8771
.15 . . . . . . . . . . . . . . . . 8695
.16. . . . . . . . . . . . . . . . 862
.17..... . . . . . . . . . . . . 8564
.18.................. . . . $847 \pm$
.19................... . . . 8403
.20................... . . . 8333
.21.............. . . . . . . . 8264
.22................... . . . 8279

| 244 ENGLISII BONDS | and consols. |
| :---: | :---: |
| .23 pr. ct. prem. a greenback dollar is worth. . 813 | .37 pr . ct. prem. a greenback dollar is worth. . . 7308 |
| .24................ . . 8064 | .38...... . . . . . . . . . . 7246 |
|  | . 39 . . . . . . . . . . . . . . . 7194 |
| .26................ . 7928 | . 40 . . . . . . . . . . . . . . . 7142 |
| .27............... . . 7874 | . $41 . .$. . . . . . . . . . . . 7092 |
| .28................ . 7812 | .42..... . . . . . . . . . . 7042 |
| .29................ . 7751 | .43. . . . . . . . . . . . . . 6993 |
| .30............... . . 7692 | .44.... . . . . . . . . . . . 6944 |
| .31................ . 7633 | . 45. |
| . $32 . . .$. . . . . . . . . . . 7575 |  |
| .33................ . 7522 | . 47 . . . . . . . . . . . . . . . 2162 |
| .34................ . 7462 | .48. . . . . . . . . . . . . . . 6758 |
| .35................ . 7409 | . 49 . . . . . . . . . . . . . . . 6716 |
| .36............... . . 7353 |  |
| Note.-The highest quotation of gold at the New York |  |
| 'Stock Exchange during the w | r was 285, July 11th, 1864. |
| A dollar currency was then wo mond, Va., reached 4400 , Feb. federate currency was worth . | th 35 cents. Gold in Richth, 1865. A dollar in Con$2 \frac{1}{4}$ cents. |

## ENGLISH BONDS AND CONSOLS.

Exchequer Bills are English bonds, similar to those of the U. S. The rates of interest vary from 5 to 3 per cent., and while the Government pays the interest, it cannot be required to refund the principal.

Consols are several English securities consolidated by act of Parliament. The rate of interest is 3 per cent.

The Stock Exchange is an association for the purpose of buying and selling stocks.

A Broker is a person who executes orders for those who are not members of the exchange.

A Jobber deals in stock on his own account. A "stag," or " outsider," is a broker who is not a member of the exchange.

A Bull is one who buys stock to be delivered to him at a future time, with the intention of selling it, in the meantime, at a higher price before he is obliged to receive it.

A Bear is one who sells stock that he does not own, to be delivered at a future date, hoping in the meantime to buy it at a less price. A "lame duck" is one who is unable to fultil his contracts, and hence is expelled from the exchange.
"Selling Short" is applied to sales of stock which the seller does not own, deliverable at a future time, generally not exceeding 60 days. The bears usually "sell short." The buyer pays interest for over 3 days.
"Seller's Option" gives the seller the privilege of delivering the stock at any time before the time specified for delivery.
"Buyer's Option" gives the purchaser the privilege of claiming the delivery of the stock at any time before the time specified for delivery.

## STOCK QUOTATIONS.

From N. Y. Herald.


| 40000 Tr'y. N. 8 -30 2d s. ... . . . . . . . . . 107 | $\left\{\begin{array}{l}\text { Treasury notes at } 7.3 \text { per cent. interest, } \\ \text { ond series. } \\ 100 \text { Shares of New York Central RR. }\end{array}\right.$ |
| :---: | :---: |
| 100 N. Y. Cen, 'Ts, '65-76. . . . . . . . 120 | cent. bonds issued in 1865, and maturing 1876. |
| 500 Hud. R. $\mathrm{T}_{\text {s }}$ 1st M....... . . . . 101 |  |
| 200 . 6 2d M. S. F........ 104 | $\left\{\begin{array}{c}\text { Hudson R. } 7 \text { per cent. second mortgage sin } \\ \text { ing fund. }\end{array}\right.$ |
| 106 E. RR. 2 d'a.................... . $513 / 8$ | Eric RR. sold at 2 days' credit at 51 \% cents per dollar. |
| 100 " ${ }^{\text {b }} 5$ w. n.............. 51 | Erie RR. to be delivered before 5 days with ont notice. |
| 1000 C | Camden and Amboy 6 per cent. maturing in 1889. |
| 100 Mich. C. 6's, b. 15 and :int..... 1073/4 | Mich. Cent. RR. Stock to be dolivered before 15 days with interest. |
| U. S. Tr. 7-30 int. F. \& A..... 111发 | U. S. Treasury notes 7.3 per cent. interest paid in February and August. |
| 1000 Eric p | Eric Preferzed Stock without notice. |
| 100 Penn. 6's, int. off. . .... .... . . . . 104 | \{ Pennsylvania 6 per cent. stock, the last interest of which has been paid. |
| 500 E. RR. b. U...................... 23 | Eric RR. stock, "Buyer's Option," when to call for the stock. |
| 300 ، s. u..........an.......... 31 | $\left\{\begin{array}{c}\text { Erie RR. stock, "Seller's Option," when to de- } \\ \text { liver the stock. }\end{array}\right.$ |

## SUCOESS IN BUSINESS.

## Short Credits.

Short credit has much to do with the amount of profits in business. The difference between long and short credits will be seen by the following table, showing the amount of $\$ 100$ in ten years.

| If turned ov |  | er every | 3 months, |  | Am't at <br> 3 pr. ct. | Am'tat 5 pr.ct. | $\begin{aligned} & \text { An't at } \\ & \text { s pr. ct. } \end{aligned}$ | $\begin{aligned} & \text { Am't at } \\ & 10 \text { pr. ct. } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | over |  |  |  | \$326.20 | \$703.99 | \$2172.45 | \$4525.92 |
| " | " | " | 6 | " | 180.61 | 265.32 | 466.09 | 672.75 |
| " | " | " | 8 | " | 155.79 | 207.89 | 317.21 | 417.72 |
| " | ${ }^{6}$ | " | 12 | " | 134.39 | 162.88 | 215.89 | 259.37 |
|  | " | ${ }^{\prime}$ | 2 | years, | 115.92 | 127.62 | 146.93 | 161.05 |
| " | " | " | 5 | " | 106.09 | 110.25 | 116:64 | 121.00 |

Small Profits.
By the above table it will be seen that quick sales and
small profits are more desirable than large profits and long credits. It must be considered, however, before reducing profits, whether the sales can be increased so as to compensate for the reduction of profits.

## Economy in Expense.

Many a young man in business fails to succeed, owng to a want of economy in expense. All expense must be deducted from the profts. "Fortunes are spent by trifles." "A penny saved is worth two earned."

| 5 | u | " | " | 252.14 | " | " |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 25 | * | 4 | 4 | 1260.71 | 4 | " |
| 50 | * | 4 | ${ }^{6}$ | 2521.42 | * | " |
| 100 | ${ }_{6}$ | 4 | ${ }^{6}$ | 5042.84 | * | " |
| \$2 | * | 4 | 4 | 10085.68 | * | " |

## Marking Goods.

It is customary among merchants to use a private mark to denote the cost and selling price of goods. Any word or phrase containing ten different letters is selected, and used to represent figures, as "White sugar," " Misfortune," \&e., thus:

$$
\begin{array}{cccccccccc}
w & h & i & t & e & s & u & g & a & r \\
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 0
\end{array}
$$

An extra letter called a "repeater" is generally used to prevent the repetition of a figure, as $x, y$, or $z$, \&c.; thus 388 would be represented by $i g z$, using $z$ as a repeater, instead of $i g g$. The object is to prevent a clue being given to
the key-word. Any mark or character may be used to represent a figure instead of a letter. Fractions may be written thus, $473 \frac{2}{3}=t u i_{i}^{h}$; or by an arbitrary mark, thus, 0 may represent $\frac{2}{3}$, then $473 \frac{2}{3}=$ tuio. Sometimes the cost mark is written below a line. and the selling price above; thus,

$$
4.62 \text { tsh sell. pr. }
$$

$\overline{3.24}=\overline{i h t}$ cost.


## THE OTIS PASENT LIGHTNING ROD,

## LIGHTNING-RODS.

The humid gases, generated by the heating and sweating of the hay, which immediately follows its accumulation in closely-packed masses, offers a strong attraction to electricity, just at the time when it is most abundant. It is an object of peculiar importance to the farmer to gaard his buildings, at such times, with properly constructed light-ning-rods; and they are a cheap mode of insurance against fire from this cause, as the expense is trifling and the security great.

As an example of the more elaborate style of rods, we show in the accompanying cut the manner in which Otis' Patent Lightning-Rods have been applied to the New York State Arsenal.

To construct a lightning-rod.
Take round or square soft iron $\frac{3}{4}$ of an inch in diameter, in pieces of convenient length ; connect the pieces by splitting one end and flattening and inserting the other, and fasten with a rivet or screw, so that the rod preserves its uniform thickness throughout. Or, the pieces may be connected in a more perfect manner, although not often so convenient, by having a male screw cut on one end of the pieces and a female screw on the other, and simply screwing them together as the rod is raised; care being taken that the
pieces are brought in contact at the outer edge, so as to form a united surface. If a square rod is used, notch the. corners with a single downward stroke of a cold chisel, at intervals of two or three inches. No part of the rod should be painted, as its efficiency would be greatly impaired. Let the upper extremity consist of one finely drawn point of copper or silver, or well gilded iron, to prevent rusting. Let the lower part of the rod, at the surface of the ground, terminate in two or three flattened divergent branches, leading several feet outwardly from the building, and buried at a depth which reaches perpetual moisture, in a bed of charcoal. Attach the rod to the building by clasps protruding three or four inches and containing glass rings or funnels for the rod to pass through. The rod must not touch the building nor the iron clasps, but only the glass; because, the latter being a non-conductor of electricity, in the event of the rods being struck by lightning, the charge is conducted harmlessly to the ground, having no point of contact with a conductor by which it might be led into the building. Upon reaching the top of the building the rod should be conducted to the centre of the ridge, and the end should then be raised to a height equal to one-half of the distance to the end of the ridge. If the roof is irregular in height, of course judgment must be used in fixing the point where the end of the rod rises above the roof, bearing in mind this important consideration-that the rod protects objects at twice the distance of its height above any point in a line perpendicular to its upper termination.

The conducting power of bodies, is in the ratio of their surfaces. Hence a bundle of wires, ribbons, or tubes of metal, are more efficient than an equal quantity of solid, round, or square rods.

The conductors of electricity in the order of their power are, copper, silver, gold, iron, tin, lead, zinc, platinum, charcoal, black lead, strong acids, soot and lampblack; metallic ores, metallic oxides, dilute acids, saline solutions, animal fluids, sea-water, fresh water, ice, living vegetables, living . animals, flame, smoke, vapor and humid gases, salts, rarified air, dry earth and massive minerals.
The non-conductors in their order are, shellac, amber, resins, sulphur, wax, asphaltum, glass, all vitrified bodies, raw silk, bleached silk, dyed silk, wool, hair, feathers, dry paper, parchment and leather, baked wood and dry vegetables.

The question of the utility of lightning-rods is not clearly decided; and certainly very grave doubts exist as to the usefulness of the various complicated patent devices which are hawked about the country, under the sanction of splendid testimonials.

Dr. Franklin's theory was,-and he clained to have proved it by having drawn the electricity harmlessly from a cloud over his kite-string,--that the value of the lightning-rod consists, not in its ability to receive shocks, but in the fact that it taps the surcharged clouds and conveys the electricity quietly to the earth.

Based upon this theory, there has recently been advanced an idea that seems sensible. It is to substitute a piece of galvanized telegraph wire for the kite-string, a pointed rod of iron at the top of the building for the kite, and another rod driven into the ground for the key in Dr. Franklin's hand.

The iron at the top should project five or six feet above the roof, and if the ridge-pole is more than twenty feet long, there should be two or more of these, all to be connected with each other and with the rod in the ground by simple wire.

This plan has the great merit of being cheap and within the reach of all-and, so far as anything is actually known of the subject, is as good as the more elaborate and expensive ones.

## PRESSURE OF EARTH AGAINST WALLS.

To find the pressure of the different kinds of earths, filling, \&c., against walls, it is necessary first to ascertain the line or angle of rupture, or natural slope, the earth would assume but for the resistance of the wall. This natural slope differs with the different kinds of earths. Assuming that the earth is level with the top of the wall, the line of rupture for the different kinds of earths, filling, \&c., will be as follows :-
A bank of vegetable earth will rupture on the surface at a distance from the top of the wall of three-fiftlis the leight of the wall.

A bank of sand will rupture at two-thirds the height of the wall.

A bank of unhewn stone, at one-seventh the height of the wall.
A bank of rubble at two-fifths the height of the wall.
A bank of brick, with a bank of vegetable earth behind it, will rupture at a distance of about one-sixth the height of the wall.

A bank of clay, well rammed, will rupture at a distance of three-sixteenths the height of the wall.

The strongest horizontal stress against the wall is at half the angle which the natural slope makes with it; hence:

The greatest pressure for a bank of vegetable earth will be at three-tenths the height of the wall from the bottom.

For a bank of sand, at one-third the height of the wall.
For a bank of rubble, at one-fifth the height of the wall.
For a bank of unhewn stone, at onc-fourteenth the height of the wall.

For a bank of brick, at one-twelfth the height of the wall.
For a bank of clay, at three-thirty-seconds the height of the wall.

Walls should therefore be built proportionably strong to these heights to sustain the different pressures. If the bank is liable to be saturated with water the wall should be doubled in strength.

## FRACTIONS-DECIMALS.

A fraction is one or more parts of a unit, and is expressed by fractional characters, thus, $\frac{1}{2}, \frac{1}{4}, \frac{3}{4}$; or by decimals, thus, $.5, .25, .75$.

When expressed by fractional characters, the upper figure is called the numerator, because it numbers or gives value to the fraction, by showing how many parts of the whole number into which the unit is divided is taken; and the lower figure is called the denominator, because it names the number of parts into which the unit is divided. Thus, $\frac{3}{8}$ means that the unit is divided into 8 parts, and that 3 out of the 8 are taken, \&c.

When expressed by a decimal, the decimal number shows that so many parts of the unit are taken, the unit itself being impliedly divided into as many parts as will correspond with the decimal number, and still retain its ratio to it. Thus, .5 means $\frac{8}{10}, .25$ means $\frac{25}{100}, .125$ means $\frac{125}{60}$, \&c.

To reduce fractions to decimals.
Divide the numerator by the denominator, adding cyphers as required.

Example.-What are the decimals of $\frac{1}{2}, \frac{3}{4}$, and $\frac{7}{8}$ ?
Soldtion. $-10 \div 2=.5,300 \div 4=.75,7000 \div 8=.875$. Ans.
To add decimals.
Add as in common addition, setting the whole numbers

258 FRACTIONS -DECIMIALS.
or integers directly under each other from the decimal point to the left, and the decimals from the decimal point to the right, as in the following example:-

$$
\begin{aligned}
& 12.75 \\
& 24.027 \\
& 14.5 \\
& 16.1278 \\
& \hline 67.4048
\end{aligned}
$$

To subtract decimals.
Set the whole numbers and decimals under each other, as directed above, and proceed as in common subtraction, as in the following example:-

| 75.15 |
| :--- |
| 28.875 |
| 46.275 |

## To mubtiply decimats.

Set the figures and multiply as in common multiplication, and point off in the product as many decimals as there are decimal places in the multiplier and multiplicand, as in the following example:-
23.25
22.15

11625
2325
4650
4650
514.9875

## To divide decimals.

Proceed as in common division, and point off to the right in the quotient as many decimals as the decimal places in the dividend exceed the decimal places in the divisor, as in the following example:-

> | $2.48] \begin{array}{l}129.952[52.4 \\ 1240\end{array}$ |
| :---: |

595
496

Useful decimals.


## FACTS ABOUT PRINTING AND BOOKMAKING.

The following are the different styles of type ordinarily used in book-printing:-

PICA.
Springs are weakened by use, but recover their strength if laid by.

SMALL PICA.
Metals have five degrees of lustre-splendent, shining, glistening, glimmering, and dull.
LONG PRIMER.

The hardness of metals is as follows: Iron, Platinum, Copper, Silver, Gold, Tin, Lead.

BOURGEOIS.
A fall of 1-10 of an inch a mile will produce a current in rivers.
BREVIER.
Melted snow produces about 1-8 of its bulk of water.
MINION.
Silica is the basis of the mineral world, and carbon of the organized.
NONPAREIL.
Sound passes in water at a velocity of 4708 feet per second, and in air 1100 feet, at a temperature of $33^{\circ}$.

AGATE.
At the depth of 45 feet, the temperature of the earth is uniform throughout the year.
PEARL.
The weight of a cuble foot of air is 527.01 grains, or 1205 ounces, avoirdupois.
Nort.-Diamond is smaller than pearl-Emerald still smoller.

We do not apologize for giving the above and the few following facts about printing, because that art has become so universally used by all classes that it is of practical importance to disseminate information in regard to it.
The specimens given above are called Roman ; CAPITALS and smail caprrals belong legitimately with this style. Italics are cast to accompany it, to give emphasis to certain parts of the matter being compōsed, or set up. Italic figures and small capitals of italic are not made. Many other styles of type, such as Black Letter, Script, Church Text, Clarendon, Title, Ionic, Full Face, \&c., are cast, and are ordinarily used to display certain lines in Job Printing, and are consequently called job type.
Printers generally charge for the setting of type, or, as they technically term it, the composition of matter, by the number of ems it contains. An em is the square of the body of the type; they measure the matter composed by - multiplying the number of ems or lines it is in length by the number of ems or lines it is in width. Nonpareil is half the size in body of Pica, consequently 4 ems of Nonpareil equal 1 of Pica. Agate is half Small Pica. Pearl is half Long Primer.
In 1 square inch there are.


In 1 square inch there are........ 144 ems Nonpareil.
" " " $\quad$ " $\ldots \ldots 2200 \frac{1}{2}$ " Agate.

That is according to the type in the office where this book is printed ; different founders vary the sizes of type slightly, so that the above is not a perfectly accurate guide in measuring the number of ems in a page or book; stillit is sufficiently so to give a very close approximation to what any printer would measure. In using the above to calculate in ems the contents of a page or book, be particular to calculate square inches, not inches square. The price of type-setting in New York varies with the different printers. Generally the price for book composition is from 80 c. to $\$ 1.00$ per 1000 ems. Much figure-work is clarged extra, so also is an extra charge made where a very narrow column is set. Pearl is charged extra on account of its smallness. The price given is for plain matter.

Pressworle is charged for by the token, which is 250 impressions of the press. Prices vary so much per token, according to the quality of the work and the number of impressions, that it is next to impossible to give an idea of it that will benefit the reader: Plain book-work, in editions of 1000 to 2000 copies, is charged usually at 50 c. to $\$ 1.00$ per token.

## SIZES OF BOOKS.

The various sizes of books were named from the number of folds that were made of a sheet of paper 19 inches by 24 ,
which, at the time the sizes of books acquired their names, was the largest sheet manufactured. Thus, a sheet of that size folded once, making 2 leaves or 4 pages, was called a folio volume ; folded twice, making 4 leaves or 8 pages, was called a quarto volume; folded four times, making 8 leaves or 16 pages, was called an octavo; folded six times, making 12 leaves or 24 pages, was called a duodecimo, \&c. They are written thus : 2 fo., 4 to, $8 \mathrm{vo}, 16 \mathrm{mo}$, \&c.

Afterwards, when the sheets came to be manufactured larger, books continued to be designated as above, but were distinguished from the above sizes by giving the new sheets names, and prefixing the name of the sheet to the above. Thus, a sheet 22 inches by 28 was called "Royal," and hence books printed on it were called royal folio, royal quarto, royal octavo, \&c.

Table, showing the number of leaves and pages from the folding of a sheet.

|  |  | Folds. | Leaves, | Pages. |
| :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \underset{\sim}{\boldsymbol{\circ}} \\ & \stackrel{\rightharpoonup}{\circ} \end{aligned}$ | 2 fo | 1 | 2 | 4 |
|  | 4to. | . 2 | 4 | 8 |
| - | 8vo | . 4 | 8 | 16 |
| 它 | 12 mo | . 6 | 12 | 24 |
|  | 16 mo | . 8 | 16 | 32 |
| $\stackrel{\rightharpoonup}{8}$ | 18 mo . | . 9 | 18 | 36 |
| ¢ | 24 mo . | . 12 | 24 | 48 |
| \$ | 32 mo . | . 16 | 32 | 64 |

Note.-TThe foldings, leaves, and pages of the royal sheet, \&c., are the same as the above, but the sheet being larger of course the leaves and pages are larger.

## STRENGTH OF MATERIALS.

## Tensile strength.

Tensile strength is the amount of cohesion existing between the atoms of a mass, or the tenacity with which the fibres or particles of a body resist separation. The tensile strength of a body is therefore in proportion to the number of its fibres, or to the area of its section.

Table, showing the weight in lbs. necessary to tear asunder one square inch of the following substances.

| metals. |  | woods |  |
| :---: | :---: | :---: | :---: |
| Designation. | Wt. in lbs. | Designation. | Wt. in lbs. |
| Copper, wrought. | 34,000 | Ash | 16,000 |
| " cast.... | 19,000 | Beach | 11,500 |
| " wire | 61,200 | Birch | 15,000 |
| Gold, cast. | 20,000 | Box | 20,100 |
| Iron, " | 27,000 | Cedar. | 11,400 |
| Iron Wire | 103,040 | Chesnut | 10.500 |
| "6 best bar | 72,000 | Cypress | 6,000 |
| " medium bar. | 60,000 | Elm . . | 13,400 |
| " inferior " | 30,000 | Fir, strongest. | 12,000 |
| Lead...... | 880 | " American | 8,800 |
| Platinum wire | 53,000 | Lig. vitac. | 11.800 |
| Silver, cast. | 40,000 | Locust... | 20,500 |
| Stecl | 120,000 | Mahogany | 21,000 |
| Tin, block | 5,000 | Maple . . . | 10,500 |
| Zinc, cast | 3,500 | Oak, American, | 11,500 |
| Brass .... | 42,000 | " seusoned. | 13,400 |
| Bras |  | Pine, Pitch. | 12,000 |
|  |  | Poplar... | 7:000 |
|  |  | Sycamore | 13,003 |
|  |  | Walnut. | 7,003 |
|  |  | Willow | 13,000 |

To find the tensile strength.
Ruce.-Multiply the area of the transverse section in inches, by the weight given in the preceding table, and the product will be the strength in lbs.

Example.-What is the tensile strength of a seasoned white oak scantling 2 inches by 3 ?

Solution.- $2 \times 3=6$, area of transverse section, $\times 13,600$ $=81,600 \mathrm{lbs}$. Ans.

Example Second.-What is the tensile strength of a round poplar stick 3 inches in diameter?

Solution.-7.068, area of circle (vide table of the areas of circles), $\times 7,000=49,476 \mathrm{lbs}$. Ans.

Example Third.-What is the tensile strength of the best bar iron, 2 inches broad by 1 inch thick?

Solution. $-2 \times 1=2$, area of transverse section, $\times 72,000$ $=144,000 \mathrm{lbs}$. Ans.

Note.-The above gives the maximum tensile strength of the materials, or the utmost strain they are capable of sustaining when drawn lengthwise. But it is to be borne in mind that the practical value is about one-fourth of the above.

Table, showing the strength of iron wire rope and hempen cable.


STRENGTH OF CABLES, ROPES, AND HAWSERS.
To find the strength of cables.
Rule.-Multiply the square of the circumference in inches by 120 , and the product is the weight in lbs. the cable will bear with safety.

Example.-What weight will a cable 6 inches in circumference bear with safety?

Solution. $-6^{2}=36 \times 120=4320$ lbs. Ans.
To find the strength of ropes and hawsers.
Rule.-Multiply the square of the circumference in inches by 200 , and it gives the weight in lbs. the rope will bear with safety.
Table, showing what weight a hemp rope will bear with safety.

| Circumference. | lbs | Circomference. | lbs. | Circumference. | lbs. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 200 | 3) | 2450. | 6 | 7200. |
| 11 | 312.5 | 3 $\frac{3}{4}$ | 2812.5 | $6 \frac{1}{4}$ | 7812.5 |
| 11 | 450. | 4 | 3200. | 67 | 8450. |
| $1 \frac{1}{4}$ | 612.5 | 44 | 3612.5 | 6离 | 9112.5 |
| 2 | 800. | $4 \frac{1}{2}$ | 4050. | 7 | 9800. |
| 21 | 1012.5 | 48 | 4512.5 | 71 | 10512.5 |
| $2 \frac{1}{3}$ | 1250. | 5 | 5000. | $7 \frac{1}{7}$ | 11250. |
| 24 | 1512.5 | 51 | 5512.5 | $7 \frac{8}{4}$ | 12012.5 |
| 3 | 1800. | $5 \frac{1}{2}$ | 6050. | 8 | 12800. |
| 31 | 2112.5 | $5 \frac{3}{4}$ | 6612.5 |  |  |

## STRENGTH OF METAL AND WOODEN RODS.

A rod having an area of the 1000th part of a square inch, made of the following materials, will sustain weights as fol-lows:-

| Designation. | Lbs | Designation. | Lbs, |
| :---: | :---: | :---: | :---: |
| Cast steel. | 134 | Tin | 5 |
| Best wrough | 70 | Lead. |  |
| Cast iron. | 19 | Oak | 12 |
| Copper | 19 | Beach | 123 |
| Platinum | 16 | Ash. | 14 |
| Silver. | 11 | White Pine | 11 |
| Gold . | , |  |  |

## HEMPEN CORDS.

Hempen cords when twisted will support the following weights to the square inch of their section :-

| Diameter. | Lbs. | Diameter. | Lbs, |
| :---: | :---: | :---: | :---: |
| $\frac{1}{4}$ to 1 inch | 8746 | 3 to 5 inches. | 5345 |
| 1 to 3 inch | 6800 | 5 to 7 inches. | 4860 |

Note.-A square inch of hemp fibres will support a weight of 9200 lbs .

The maximum strength of a good hemp rope is 6400 lbs . to the square inch. Its practical value not more than onehalf this strain. Before breaking it stretches from $\frac{1}{6}$ to $\frac{1}{7}$, and its diameter diminishes from $\frac{1}{4}$ to $\frac{1}{7}$.

The strength of manilla is about $\frac{1}{2}$ that of hemp. White ropes are $\frac{1}{3}$ more durable.

## LATERAL OR TRANSVERSE STRENGTH.

Table, showing the transverse strength of timber, 1 foot long and 1 inch square : Weight suspended from one end.

| Materials. | $\left.\right\|_{\text {Lheaking weight. }} ^{\text {Lhe }}$ | Greatest deflection. incher. | Welg'thorne with safety. Lbs. | Valuo for gener'l use. $L$ Lbs. |
| :---: | :---: | :---: | :---: | :---: |
| White oak, seasoned | 240. | 9. | 196. | 40. |
| Chesnut, " | 170. | 1.8 | 115. | 65. |
| Yellow pine, " | 150. | 1.7 | 100. | 62. |
| White " " | 135. | 1.4 | 95. | 64. |
| Ash, " | 175. | 2.4 | 105. | 77. |
| Hickory, | 270. | 8. | 200. | 50. |

Table, showing the transverse strength of iron-square bar, 2 inches by 12 inches long: Weight suspended from one end.

| Materlai. | Lreaking weight, | Weight burne gafely | Valus. | Value for geng- <br> ral use. <br> Las. <br> Cast iron |
| :---: | :---: | :---: | :---: | :---: |

Round, 3 inches diameter' by 12 inches long: Weight suspended from end.

| Msteriel. Castiron. | Breaking welght, Lbs. 121000 | Welght borne with gafety. Lbe. 8000 | Talce. 240 | Value for general use 17. |
| :---: | :---: | :---: | :---: | :---: |

Note.-The strength of a projecting beam is only onefourth of what it would be if supported at both ends, and only one-sixth of what it would be if fixed at both ends. The former is to the latter as 2 is to 3 .

To find the transverse strength when the bar or beam is fixed at one end and the load applied at the other.

Rule.-Multiply the value in the preceding table by the breadth, and square of the depth in inches, and divide the product by the length in feet. The quotient will be the weight in lbs.

Example.-What weight will a seasoned white oak beam 4 inches square and projecting 36 inches sustain?

Solution. $-4 \times 4^{2} \times 40=2560 \div 3$ feet, projection, $=853 \frac{1}{3}$ lbs. Ans.

Example 2d.-What weight will a cast iron bar 2 inches square and projecting 4 feet sustain?

Solution. $-2 \times 2^{2} \times 400=3200 \div 4=800$ lbs. Ans.

Note.-When the beam is loaded uniformly throughout its length the result must be doubled.

When the bar or beam is fixed at both ends and the weight applied in the middle.

Rule.-Multiply the value in the preceding table by six times the breadth, and the square of the depth in inches, and divide the product by the length in feet.

Example.-What weight will an ash beam 8 inches deep by 10 broad and 10 feet long sustain in the middle, when fixed at the ends?

Solution.- $77 \times 60 \times 8^{2}=295680 \div 10=29568 \mathrm{lbs}$. Ans.
Example 2d. What weight will a cast iron bar 2 inches square and 4 feet long support, when applied in the middle, the ends being fixed?

Solution.- $400 \times 12$, six times breadth, $\times 2^{2}=19200 \div 4=$ 4800 lbs. Ans.

Nore.-When the weight is equally distributed along its entire length, the above results mnst be doubled.

When the bar or beam is supported at both ends and the weight applied in the middle.

Rule.-Multiply the value in the preceding table by the square of the depth, and four times the breadth in inches, and divide the product by the length in feet.

Example.-What weight will a white pine beam 8 inches broad by 6 deep and 6 feet long carry when applied in the middle, the ends being supported?

Soldtion. $-64 \times 6^{2} \times 32=24576 \div 6=4129+\mathrm{lbs}$. Ans.
Example 2d.-What weight will a cast iron bar 2 inches square and 60 inches between the supports carry?

Solution. $-400 \times 2^{2} \times 8=12800 \div 5$ feet $=2560 \mathrm{lbs}$. Ans.
Table, showing the resistance of materials to crushing.

| Designation. woods. | Crushiog weight per square foch. |  |
| :---: | :---: | :---: |
|  | In Ibs. | In tons of 2.03 lis. |
| Ash. | 8,683 |  |
| Beech, well seasoned, | 19,363 | 9.6 |
| Birch, " ${ }^{\text {a }}$ | 11,663 | 5.8 |
| ( 'edar,. | 5,863 | 2.9 |
| Elder,. | 9,973 | 4.9 |
| IElm, well seasoned,. | 10,331 | 5.1 |
| Tir. (spruce, | 6.819 | 3.4 |
| Mahogany, | 8.198 | 4.09 |
| Oals,... | 6,982 | 2.9 |
| Pine, pitch,. | 6,790 | 3.3 |
| " yellow, | 5.445 | 2.7 |
| Poplar,...... | 5,124 | 2.5 |
| Sycamore, highly season | 12,101 | 6. |
| Walnut, . . . . . . . . | 7,227 | 3.6 |
| Willow,..... | 6,128 | 3.06 |
| Brass. yellow,. | 10.304 | 5.15 |
| Iron, cast, . | 98,000 | 49. |
| " bar.. | 40,000 | 20. |
| " boiler plate, | 32,000 | 16. |
| minerais. |  |  |
| Brick, common, | 800 | 0.40 |
| " fire,.. | 1,700 | 0.85 |
| Brick work, . | 612 | 0.306 |
| Chalk. | 334 | 0.16 |
| Granite. . | 11,000 | 5.50 |

## STRENGTH OF ICE.

Ice 2 inches thick will bear men on foot.
" 4 " 6 " 6 horseback.

Ice 6 inches thick will bear cattle and teams with light loads.
 square foot.

This supposes the ice to be sound throughout its whole thickness, without "snow-ice."

## WEIGHT OF SQUARE ROLLED IRON.



From $\frac{1}{10}$ inch to 12 inches, and 1 foot in length.

| Eliso in iaches. | Woight in pounds. | Size in | Weight in pounds. | Size in inches. | Welght in pounds. | ${ }_{\substack{\text { Sizo in } \\ \text { inches. }}}$ | Welght in pounds. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| . $\frac{1}{16}$ | . 013 | 2. | 13.529 | 4. $\frac{3}{8}$ | 64.700 | $7 . \frac{1}{2}$ | 190.136 |
|  | . 053 | 2.18 | 15.263 | 4.8 | 68.448 | $7 . \frac{3}{4}$ | 203.124 |
| - 8 | . 053 | $2 . \frac{1}{4}$ | 17.112 | 4.8 | 72.305 | 8. | 216.336 |
| . 16 | . 118 | 2. 2.8 | 19.066 21.120 | $4 . \frac{3}{4}$ | 76.264 80.333 | 8. 8. | 230.068 |
| . 1 | . 211 | 2.2 | 23.292 | $5 \cdot 8$ | 84.48' | 8. $8 . \frac{1}{4}$ | 244.220 25880 |
| . $\frac{8}{8}$ | . 475 | 2.3 | 25.500 | 5.1 | 88.784 | 9. | 273.792 |
| - 1 | . 845 | $2 \cdot \frac{7}{8}$ | 27.939 | 5.1 | 93.168 | 9.4 | 289.220 |
| . 8 | 1.320 | 3. | 30.416 | 5.8 | 97.657 | $9 . \frac{1}{2}$ | 305.056 |
| . 3 | 1.901 | 3.18 | 33.010 | $5 . \frac{1}{3}$ | 102.240 | $9 . \frac{3}{4}$ | 321.332 |
| . $\frac{7}{8}$ | 2.588 | 3. | 35.704 | 5.8 | 106.953 | 10.4 | 337.920 |
| 1. | 3.380 | 3.3 | 38.503 | 5.3 | 111.756 | 10.1 | 355.136 |
| 3.8 | 4.278 | 3.1 | 41.408 | 5.8 | 116.671 | $10 . \frac{1}{2}$ | 372.672 |
| 1.4 | 5.280 | 3.8 | 44.418 | 6. | 121.664 | $10 . \frac{3}{4}$ | 350.628 |
| 1.8 | 6.390 | 3.3 | 47.634 | 6.1 | 132.040 | 11. | 408.9.0 |
| 1.7 | 7.604 | $3 . \frac{7}{8}$ | 50.756 | $6 . \frac{1}{2}$ | 142.816 | $11 . \frac{1}{4}$ | 427.812 |
| $1 . \frac{8}{8}$ | 8.926 | 4. | 54.084 | $6 . \frac{3}{4}$ | 154.012 | $11 . \frac{1}{3}$ | 447.024 |
| 1.3 | 10.352 | $4 . \frac{1}{8}$ | 57.517 | 7. | 165.632 | 11.8 | 466.684 |
| $1 . \frac{1}{8}$ | 11.883 | 4.1 | 61.055 | 7.1 | 177.672 | 1\%. | 486.676 |
| 12* |  |  |  |  |  |  |  |

274 WEIGHT OF SQUARE ROLLED IRON.

Example.-What is the weight of a bar of rolled iron 1 $\frac{1}{2}$ inches square and 12 inches long?

In column 1st find $1 \frac{1}{2}$, and opposite to it is 7.604 pounds, which is 7 lbs . and $\frac{604}{1000}$ of a lb. If the lesser denomination of ounces is required, the result is obtained as follows: Multiply the remainder by 16 , pointing off the decimals as in multiplication of decimals, and the figures remaining on the left of the point indicate the number of ounces.

$$
\text { Thus, } \frac{604}{1000} \text { of a lb. }=.604
$$

16
9.664 ounces.

The weight, then, is $7 \mathrm{lbs} .9 \cdot \frac{884}{1000}$ ounces.
If the weight for less than a foot in length was required, the readiest operation is this:

Example.-What is the weight of a bar $6 \frac{1}{4}$ inches square and $9 \frac{3}{4}$ inches long?

In column 5th, opposite to $6 \frac{1}{4}$, is 132.040 , which is the weight for a foot in length.

$$
\begin{aligned}
6 \frac{1}{4} \times 12 \text { inches } & =132.040 \\
\hline 6 . " \text { is } \frac{1}{2} & =66.020 \\
3 . " \text { is } \frac{1}{2} \text { of } 6 & =33.010 \\
. \frac{1}{2} " \text { is } \frac{1}{6} \text { of } 3 & =6.5016 \\
\frac{. \frac{1}{4}}{9 . \frac{3}{4}} & \text { is } \frac{1}{2} \text { of } \frac{1}{2}
\end{aligned}=\frac{2.7508}{} \quad=108 \cdot \frac{2824}{10000} \text { pounds. }
$$

## WEIGHT OF ROUND ROLLED IRON.

From $\frac{1}{4}$ inch to 12 inches diameter, and 1 foot in length.

| Plamet'r in inches | Weight in pounds. | Dlamet'r In incher | Weleht in pounds. | $\left\lvert\, \begin{array}{\|c\|c\|} \hline \text { Diames'r } \\ \text { to inchea } \end{array}\right.$ | Welght in pounds. | Dlamet'r in inches | Welght in pounde. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $2 . \frac{1}{8}$ | 11.988 | 4.1 | 53.760 | 7.3 | 159.456 |
| -16 | 010 | 2.15 | 13.440 | $4 . \frac{1}{8}$ | 56.788 | 8. | 169.856 |
| . $\frac{1}{8}$ | . 041 | $2 . \frac{1}{3}$ | 14.975 | 4.3 | 69.900 | 8.1 | 180.696 |
| - $\frac{3}{16}$ | . 093 | $2 . \frac{1}{2}$ | 16.688 | $4 . \frac{7}{8}$ | 63.094 | 8. $\frac{1}{3}$ | 191.808 |
|  | . 165 | $2 . \frac{8}{8}$ | 18.293 | 5. | 66.752 | $8 . \frac{1}{4}$ | 203.260 |
|  | .373 | 2.3 | 20.076 | $5 . \frac{1}{8}$ | 69.731 | 9. | 215.040 |
| . 3 | . 663 | 2. $\frac{8}{8}$ | 21.944 | 6.1 | 73.172 | 9.1 | 227.152 |
| 嘖 | 1.043 | 3. | 23.888 | 5. | 76.700 | $9 . \frac{1}{2}$ | 239.600 |
| $\cdot \frac{1}{4}$ | 1.493 | 3. $\frac{1}{8}$ | 25.926 | $5 . \frac{1}{2}$ | 80.304 | 9.4 | 252.376 |
| - $\frac{1}{8}$ | 2.032 | 3.7 | 28.040 | 5. | 84.001 | 10. | 266.288 |
| 1. | 2.654 | 3.8 | 30.240 | 5. | 87.776 | 10.7 | 278.924 |
| $1 . \frac{1}{8}$ | 3.360 | $3 . \frac{1}{8}$ | 32.512 | $5 . \frac{8}{8}$ | 91.634 | $10 . \frac{1}{2}$ | 282.988 |
| 1.1 | 4.172 | 3.8 | 34.886 | 6. | 95.552 | 10.4 | 306.800 |
| 1.4 | 5.019 | $3 . \frac{3}{4}$ | 37.332 | $6 . \frac{1}{4}$ | 103.704 | 11. | 321.216 |
| $1 . \frac{1}{2}$ | 5.972 | 3. $\frac{1}{8}$ | 39.864 | $6 . \frac{1}{2}$ | 112.160 | 11. ${ }^{4}$ | 336.004 |
| 1. ${ }^{8}$ | 7.010 | 4. | 42.464 | $6 . \frac{2}{4}$ | 120.960 | 11.7 | 351.104 |
| 1. $\frac{1}{2}$ | 8.128 | $4 . \frac{1}{8}$ | 45.174 | 7. | 130.048 | 11.3 | 366.536 |
| 1. $\frac{7}{8}$ | 9.333 | 4.1 | 47.952 | 7.1 | 139.544 | 12. | 382.208 |
| 2. | 10.616 | 4. $\frac{8}{8}$ | 50.815 | 7. $\frac{1}{2}$ | 149.398 |  |  |

The application of this table is precisely similar to that of the preceding one.

## MASONRY.



A perch of stone is 24.75 cubic feet; when built in the wall, 22 cubic feet make 1 perch, $2 \frac{3}{4}$ cubic feet being allowed for the mortar and filling.

Three pecks of lime and four bushels of sand to a perch of wall.

To find the number of perches of stone in walls.
Role.-Multiply the length in feet by the height in feet, and that by the thickness in feet, and divide the product by 22 , and the quotient will be the number of perches of stone in the wall.

Example.-How many perches of stone contained in a wall 40 feet long, 20 feet high, and 18 inches thick?

Solution. -40 feet, length, $\times 20 \mathrm{ft}$., height, $\times 1 \frac{1}{2}$ feet, thick, $=1200 \div 22=54.54$ perches. Ans.

Note.-To find the number of perches of masonry, divide the product, as above, by 24.75 , instead of 22 .

Brick-work.
The dimensions of common bricks are from $7 \frac{3}{4}$ to 8 inches long, by $4 \frac{1}{4}$ wide, and $2 \frac{1}{2}$ thick. Front bricks are $8 \frac{1}{4}$ inches long, by $4 \frac{1}{2}$ wide, and $2 \frac{1}{2}$ thick.

The usual size of fire bricks is $9 \frac{3}{8}$ inches long, by $4 \frac{5}{6}$ wide, by $2{ }^{8}$ thick.

Twenty common bricks to a cubic foot when laid; 15 common bricks to a foot of 8 -inch wall when laid.

To find the number of common bricks in a wall.
Rule.-Multiply the length of the wall in feet by the height in feet, and that by its thickness in feet, and that again by 20 , and the product will be the number of bricks in the wall.

Example.-How many common bricks in a wall 40 feet long by 20 feet high and 12 inches thick?

Solution. -40 ft ., length, $\times 20 \mathrm{ft}$., height, $\times 1 \mathrm{ft}$. , thick. $\times 20=16000$. Ans.

Note. -For walls 8 ins. thick, multiply the length in feet by the height in feet, and that by 15 , and the product will be the number of bricks in the wall.

When the wall is perforated by doors and windows, or other openings, find the sum of their cubic feet by severally multiplying their lengths and widths and thicknesses in feet together, and deducting the whole from the cubic contents of the wall, including the openings, before multiplying by 20 or 15 , as above.

## Laths.

Laths are $1 \frac{1}{4}$ to $1 \frac{1}{2}$ inches, wide by 4 feet long, are usually set $\frac{1}{4}$ inch apart, and a bundle contains 100 .

## THE MECHANICAL POWERS.

The mechanical powers are three in number, namely: the lever, the inclined plane, and the pulley. The wheel and the axle is a revolving lever; the wedge is a double.inclined plane, and the screw is a revolving inclined plane.

## THE LEVER.

To find the length of the longest arm of the lever; the weight to be raised, the power to be applied, and the length of the shortest arm of the lever being given.

Rule.-Multiply the weight by its distance from the fulcrum and divide the product by the power, and the quotient is the distance from the fulcrum the power must be applied, or, the longest arm of the lever.

Example.-Given, a weight of 900 lbs., distant 2 feet from the fulcrum, to be raised by a force or power of 75 lbs ; required, the length of the longest arm of the lever.

Solutron. -900 lbs , the weight, $\times 2$ feet, distance from fulcruin, $=1800 \div 75 \mathrm{lbs}$., the power, $=24$ feet. Ans.

To find the length of the shortest arm of the lever; the weight to be raised, the power to be applied, and the length of the longest arm of the lever being given.

Rule.-Multiply the power by its distance from the fulcrum, and divide the product by the weight, and the quotient is the distance the woight must be placed from the fulcrnm, or, the shortest arm of the lever.

Example.-What distance must a weight of 800 lbs . be placed from the fulcrum, to be raised by a power of 150 lbs . placed 8 feet from the fulcrum?

Solution. -150 lbs ., the power, $\times 96$ inches, its distance from the fulcrum, $=14400 \div 800$ lbs., the weight,$=18$ inches. Ans.

To find the power required to raise a given weight; the distances of the weight and the power from the fulcrum being given.

Rule.-Multiply the weight by its distance from the fulcrum and divide the product by the distance of the power from the fulcrum.

Example.- What power will raise a weight of 600 lbs . 20 inches from the fulcrum, applied 8 feet from the fulcrum?

Solution.-600 lbs., weight, $\times 20$ inches, distance of weight from fulcrum, $=12000 \div 96$ inches, distance of power from fulcrum, $=125$ lbs. Ans.

To find the weight, at a given distance from the fulcrum, a given power at a given distance from the fulcrum will raise.

Rule.-Multiply the power by its distance from the ful-
crum and divide the product by the distance of the weight from the fulcrum.

Example.-What weight will a power of 250 lbs .10 feet from the fulcrum raise, the weight placed 20 inches from the fulcrum?

Solution.-250 lbs., the power, $\times 120$ inches, its distance from the fulcrum, $=30000 \div 20$ inches, distance of weight from fulcrum, $=1500 \mathrm{lbs}$. Ans.

The general rule, therefore, for ascertaining the relation of power to weight in a lever, is: the power applied, multiplied by its distance from the fulcrum, is equal to the weight multiplied by its distance from the fulcrum.

The pressure upon the fulcrum equals the sum of the weight and power.

Note.-It must be remembered that, according to the foregoing rules and examples, the weight and force are made by the introduction of the lever to equal or balance each other. Hence, to get at their practical value, we must either shorten the short arm, or lengthen the long arm of the lever, add to the power, or deduct from the weight, to such an extent as each may judge for himself expedient under the circumstances.

## THE INCLINED PLANE.



To find the power or force required to raise a given weight up an inclined plane of a given length and height.

Ruce.-As the length of the plane is to its height, so is the weight to the pawer.

Example.—Required the power necessary to raise 1500 lbs. up an inclined plane 20 feet long and 8 feet high ?

Solution.-As $20: 8:: 1500: 600 \mathrm{lbs}$. Ans.
To find the height of an inclined plane when its length and base are given.

Rule.-Subtract the square of the base from the square of the length, and the square root of the remainder is the height.

Example.-Given an inclined plane, the length of which is 40 feet and base 38 : required, its height?

Solution.-1600, square of length, -1444 , square of base, $=\downarrow 156=12.49$ feet. Ans.

To find the length when its base and height are given.

Rule.-Add the squares of the height and the base, and the square root of their sum will be the length.

Example.-What is the length of an inclined plane the base of which is 20 feet and its height 12 ?

Solution.-400, square of base +144 , square of height, $=\downarrow 544=23.32$ feet. Ans.

To find the base when the length and height are given.
Rule.-Subtraet the square of the height from the square of the length, and the square root of the remainder will be the base.

Example.-What is the base of an inclined plane, whose height is 10 feet, and length 25 ?

Solution.-625, square of length, -100 , square of height, $=\sqrt{ } 525=22.91$ feet. Ans.

To find the pressure of a weight on an inclined plane when raised by its equivalent power.

Ruie.-As the length is to the weight, so is the base to the pressure.

Example.-What is the pressure of 1000 lbs. on an inclined plane, the length of which is 80 feet and the base 70 ?

Solution.-80 feet, length, : 1000 lbs., :: 70 feet, base, : 875 lbs Ans.

Notes.-When the line of direction of the power is parallel to the plane, the power is least and the pressure least.

When the power does not run parallel to the plane, draw a line perpendicular to the direction of the power's action from the end of the base line (at the back of the plane), and the intersection of this line on the length will determine the length and height of the base.

## THE WHEEL AND THE AXLE.

The power multiplied by the radius of the wheel is equal to the weight multiplied by the radius of the axle.

As the radius of the wheel is to the radius of the axle, so is the effect to the power.

To find the weight a given tractile force or power will move on a wheel and axle of given radii.

Rule.-Multiply the tractile or drawing force by the radius of the wheel, and divide the product by the radius of the axle.

Example.-What weight will a tractile force of 250 lbs . draw on a wheel (or wheels) of a radius of 3 feet: radius of axle 4 inches?

Solution.-250 lbs., tractile force, $\times 36$ inches, radius of wheel,$=9000 \div 4$ inches, radius of axle,$=2250 \mathrm{lbs}$. Ans.

To find the tractile force required to move a given weight on a wheel and axle of given radii.

Rule.-Multiply the weight by the radins of the axle and divide the product by the radius of the wheel.
Example.-Required, the tractile force necessary to draw 2000 lbs . on a wheel of $2 \frac{1}{2}$ feet radius, and axle of 3 inches radius?

Solution.-2000 lbs., weight, $\times 3$ inches, radius of axle,$=6000 \div 30$ inches, radius of wheel, $=200 \mathrm{lbs}$. Ans.

To find the radius required for a wheel to move a given weight by a given force on a given radius of axle.
Rule.-Multiply the weight by the radius of the axle and divide the prodact by the foree.
Example.-What radius must a wheel have, the radius of whose axle is 4 inches, to move a weight of 1320 lbs. by a force of 220 lbs?
Solution.-1320 lbs., weight, $\times 4$ inches, radius of axle, $=5280 \div 220 \mathrm{lbs} .$, tractile foree,$=24$ inches. Ans.

To find the radius of an axle required to move a given woight by a given force, on a wheel of a given radius.
Rule.-Multiply the force by the radius of the wheel and divide the product by the weight.
Example.-A weight of 1200 lbs . is to be moved on a wheel of 4 feet radius by a foree of 150 lbs . : What must be the radius of the axle ?
Solutron. -150 lbs., force, $\times 48$ inches, radius of wheel,$\rightleftharpoons$ $7200 \div 1200 \mathrm{lbs} .=6$ inches. Ans.

Note.-It will be observed that, according to the above rules, illustrated by the foregoing examples, the power or force of traction and the weight or load are equivalents; that is to say, the one is, by the interposition of the wheel and axle, made to counterpoise the other. To find their easy practical value, deduct $\frac{1}{4}$ from the weight, or add $\frac{1}{6}$ to the tractile force.

## THE WEDGE.



To find the force necessary to separate two bodies from one another in a direction parallel to the back of the wedge.

Rule.-As the length of the wedge is to half its back, so is the resistance to the force.

Example.-The length of the back of a double wedge is 6 inches, and its length through the middle 12 inches. Required, the force necessary to separate a substance having a resistance of 200 lbs ?

Solution.-12 inches, length, : 3 inches, back, :: 200 lbs ., resistance, : 50 lbs . Ans.

To find the requisite force when only one of the bodies is movable.

Rule.-As the length of the wedge is to its back, so is the resistance to the force.

Example.-What power applied to the back of a wedge will raise a weight of $20,000 \mathrm{lbs}$. ; the wedge being 6 inches deep and 100 long on its base?

Solution.-100 inches, length, : 6 inches, depth, :: 20,000 lbs., weight, : 1200 lbs . Ans.

Note.-The power of the wedge increases as its length increases, or as the thickness of its back decreases.

THE SCREW.


The screw is a revolving inclined plane, or an inclined plane wound romnd a cylinder. Hence, when its length and its pitch, or height, are ascertained, the same rules that govern the inclined plane apply to the screw.

To find the length of the inclined plane of a screw.
Rule.-Add the square of the circumference of the screw to the square of the pitch, or distance between the threads, and take the square root of the same, which will be the length of the plane. The leight is the distance between the consecutive threads.

Example,-What is the length of the inclined'plane of a screw of 12 inches circumference and 1 inch pitch?
Solution. $-12^{2}+1^{2}=145$ and $\vee 145=12.04159$ inches. Ans.
Note.-It will be observed that the length of the plane as given in the above example is the lengtl of only one turning of the screw, or the length of once round the circumference, which, in ascertaining the power of a screw, is all that is necessary to be known of the length. The entire length of the plane and the entire height of the screw have nothing to do with its power. A single section, comprising one revolution of the plane or the cylinder, is enough.

To find the power required to raise a given weight by means of a screw of given dimensions.

Rule.-As the length of the inclined plane is to the pitch, or height of it, so is the weight to the power.

Example.-What is the power requisite to raise 9000 lbs . by a screw 15 inches circumference, and $1 \frac{1}{2}$ inches pitch?
Solution. $-15^{2}+1 \frac{1^{2}}{2}=227 \frac{1}{4}$ and $V 22 \frac{1}{4}=15.62$ inches, length, then 15.62 inches, length, : $1 \frac{1}{2}$ inches, pitch, : : 9000 lbs., weight, : 864.27 lbs . Ans.
Note.-When a wheel or capstan is applied to turn the scres, the length of the lever is the radius of the circle described by the handle of the wheel or capstan bar, and half the diameter of the screw is the radius of the axle.

When the screw is turned by a wheel, a crank, or capstan,
find the power of the wheel, crank, or capstan by means of the rules given under "The Wheel and the Axle," and de duct the force thus acquired from the force necessary to drive the screw in raising the weight alone. The remainder is the forec required to raise the weight by the combined power of the screw and the lever.

## THE PULLEY.



When only one cord or rope is used.
To find the force necessary to raise a given weight by means of a pulley of a given number of sheaves, dec.

Rule.-Divide the weight to be raised by the number of parts of the rope engaged in supporting the lower or morable block.

Example.-What is the force required to raise 600 lbs . by means of a lower block containing six sheaves: rope fastened to the upper block?

- Soldtion. $-2 \times 6=12$; then, $600 \div 12=50 \mathrm{lbs}$. Ans.

Example 2d.-What force when the rope is fastened to the lower block?
Solution. $-6 \times 2+1=13$; then $600 \div 13=46.16 \mathrm{lbs}$. Ans.
When more than one rope is used.
In a Spanish Burton, where there are two ropes, two movable pulleys, and one fixed and one stationary pulley, with the ends of one rope fastened to the support and upper movable pulley, and the ends of oe other fastened to the lower block and the power, the weight is to the power as 5 to 1 .

In one where the ends of one rope are fastened to the support and the power, and the ends of the other to the lower and upper blocks, the weight is to the power as 4 to 1 .

## DEFINITIONS OF MATHEMATICAL FORMS.

Fic. 1. Parallel Lines are everywhere


Fig. 2.


Fig. 3.


Fig. 4.
 equally distant; as, A B and CD.

An Angle is the difference of direetion between two lines which meet; as, A D E. The point of meeting is called the vertex of the angle, and when the angle is named the letter at the vertex is placed second; as, C D E.

A Right Angle is formed when a straight line meeting another makes two equal angles; as, A D C and CD B.

An Acute Angle is one less than a right angle; as, E B D, Fig. 3.

An Obtuse Angle* is one greater than a right angle; as, A D E, Fig. 4.
A Surface has two dimensions-length and breadth.
A Triangle is a figure having three sides; as, A B C, Fig. 5.

Fig. 5.


The Altitude of a triangle is the perpendicular distance of the vertex from the line of the base; as, BC is the altitude of the triangle A B C, Fig. 5. A Right-Angle Triangle is a triangle having a right angle;

[^6]as, A C B, Fig. 5. The side opposite the right angle is called the lyypothenuse; as, A B.

A Parallelogram is a four-sided figure whose opposite sides are parallel; as, Fig. 6.

A Rectangle is a parallelogram whose angles are right angles; as, Fig. 7.

A Square is a rectangle the sides of which are equal. Fig. 8.

A Trapezoid is a four-sided figure having but two of its sides parallel ; as, A B C D, Fig. 9.

The Altitude of a Parallelogram, a Rectangle, a Square or a Trapezoid is the perpendicular distance between the base and the line of the parallel side

Fig. 8.

 opposite the base ; as, E F, Fig. 9.

A Circle is a plane surface bounded by a line, every point of which is equally distant from a point called the centre; as, $\mathrm{A} \mathrm{B} \mathrm{CD}, \mathrm{Fig} 10.$.

The. Circumference of a circle is the line by which it is bounded ; as, A BCD, Fig. 10.

The Diameter of a circle is a straight line passing through the centre and terminating in the circumference ; as, D E B, Fig. 10.


The Radius of a circle is the distance from the centre to the circumference; as, E F.

Fig. 11. A Solid has three dimensions-length,


Fza. 12.


Fla. 13.


Fig. 14.


Fig. 15.


Fig. 16.


Fig. 17.
 breadth, and thickness; as, Fig. 11.

A Prism is a solid whose sides are parallelograms, and whose ends are equal and similar ; as, Fig. 12.

When the ends of a prism are triangular, it is called a triangular prism; as, Fig. 12.

When the ends of a prism are square, it is called a square prism; as, Fig. 13.

When the ends of a prism are hexagonal, it is called a hexagonal prism ; as, Fig. 14.

When the ends of a prism are circular, it is called a cylinder ; * as, Fig. 15.

When all the sides of a rectangular prism are square, it is called a cube; as, Fig. 16.
A Pyramid is a solid, the base of which is a plane rectilinear figure, and having sides which are triangles whose vertices meet at a point at the top called the vertex of the pyramid. Fig. 17.

The Altitude of a pyramid or a cone is the perpendicular distance from the vertex to the plane of the base; as, Fig. 17.

A Cone is a solid, the base of which is a circle, and which tapers uniformly to a point at the top called a vertex. Fig. 18.

[^7]A Frustum of a pyramid or a cone is the part that remains after cutting off the top by a plane parallel to the base.

Fig. 19 represents the frustum of a pyramid.
Fig. 20 represents the frustum of a cone.
An Ellipse is a plane curve such that the sums of the distances of any points in the bounding line from two points within called the foci are

Fig. 19


Fig. 20.


Fig. 1.


Fig. 22.


Fig. 23.


Fig. 24.



To find the circumference of a circle.
Rule 1.-Multiply the diameter by 3.1416 , and the product will be the circumference.

Rule 2.-Or, as 7 is to 22 so is the diameter to the circumference.
Example.-What is the circumference of a circle whose diameter is 25 ?
Solution.-25 $\times 3.1416=78.54$. Ans. By Rule 2.-7: $22:: 25$ : 78.5. Ans.

To find the diameter of a circle.
Rule 1.-Divide the circumference by 3.1416, and the quotient will be the diameter.
Rule 2.- Or, as 22 is to 7 , so is the circumference to the diameter.

Example.-What is the diameter of a circle whose circumference is 69.11 ?

Solution.-69.11 $\div 3.1416=22$. Ans. By Rule 2.-22 : 7::69.11: 22. Ans.
To find the area of a circle.
Roce 1.-Multiply the square of the diameter by .7854, or the square of the circumference by .07958 , and the product will be the area.

Rule 2.-Or, multiply half the circumference by half the diameter.

Rule 3.-Or, as 14 is to 11 , so is the square of the diameter to the area.

Rule 4.-Or, as 88 is to 7 , so is the square of the circumference to the area.

To find the side of an equal square containing the same arect as a given circle.

Role.-Take the square root of the area, which will be the side of the equal square.

To find the solidity of a sphere.
Role.-Multiply the cube of the diameter by .5236 , and the product is the solidity.

## EXPLANATION AND USE OF THE FOLlowing table.

In the lefthand column will be found the diameter of the circle; in the next column to the right will be found its corresponding circumference; in the third to the right will be found the area, and in the right hand column will be found the length of the side of an equal square containing the same area.

Example.-What is the side of a square having the same area as a circle of $64 \frac{1}{2}$ inches diameter?

Solution.-Find $64 \frac{1}{2}$ in the left-hand column, and opposite it to the right, under the heading "Side of Equal Square," will be found 57.101 , the length of the side. Ans. 13*

Table, showing the Areas of Circles and the Sides of thein equivalent Squares, from 1 to 100.

| Dlam. | Circum. | Area. | side of | Diam. | Circum. | Area. | $\begin{gathered} \text { Side or } \\ \text { equal square. } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\frac{1}{1}$ | . 392 b | . 01227 | . 110 | 113 ${ }^{\frac{3}{4}}$ | 36.91 | 108.43 | 10.413 |
| $\frac{1}{4}$ | . 7854 | . 04908 | . 221 | 12 | 37.69 | 113.09 | 10.634 |
| , | 1.570 | . 1963 | . 443 | $12 \frac{1}{4}$ | 38.48 | 117.85 | 10.856 |
| $\frac{3}{4}$ | 2.356 | . 4417 | . 663 | $12 \frac{1}{2}$ | 39.27 | 122.71 | 11.177 |
| $1{ }^{4}$ | 3.141 | . 7854 | . 886 | $12 \frac{3}{4}$ | 40.05 | 127.67 | 11.299 |
| 14 | 3.927 | 1.227 | 1.107 | 13 | 40.84 | 132.73 | 11.520 |
| $1 \frac{1}{2}$ | 4.712 | 1.767 | 1.329 | 134 | 41.62 | 137.88 | 11.742 |
| $1 \frac{3}{4}$ | 5.497 | 2.404 | 1.550 | 133 | 42.41 | 143.13 | 11.964 |
| 2 | 6.283 | 3.141 | 1:772 | 13 | 43.19 | 148.48 | 12.185 |
| $2 \frac{1}{4}$ | 7.068 | 3.976 | 1.994 | 14 | 43.98 | 153.93 | 12.407 |
| $2 \frac{1}{2}$ | 7.854 | 4.908 | 2.215 | 14. | 44.76 | 159.48 | 12.628 |
| $2 \frac{3}{4}$ | 8.639 | 5.939 | 2.437 | $14 \frac{4}{4}$ | 45.55 | 165.13 | 12.850 |
| 3 | 9.424 | 7.068 | 2.658 | $14 \frac{3}{4}$ | 46.33 | 170.87 | 13.071 |
| $3{ }^{1}$ | 10.21 | 8.295 | 2.880 | 15 | 47.12 | 176.71 | 13.293 |
| $3 \frac{1}{2}$ | 10.99 | 9.621 | 3.101 | $15 \frac{1}{4}$ | 47.90 | 182.65 | 13514 |
| $3 \frac{3}{4}$ | 11.78 | 11.044 | 3.323 | $15 \frac{1}{2}$ | 48.69 | 188.69 | 13.736 |
| 4 | 12.56 | 12.566 | 3.544 | 153 | 49.48 | 194.82 | 13958 |
| 41 | 13.35 | 14.186 | 3.766 | 16 | 50.26 | 20106 | 14.179 |
| $4 \frac{1}{2}$ | 14.13 | 15.904 | 3.9\%8 | 161 | 51.15 | 207.39 | 14.401 |
| $4 \frac{3}{4}$ | 14.92 | 17.720 | 4.209 | $16 \frac{1}{2}$ | 51.83 | 213.82 | 14.622 |
| 5 | 15.70 | 19.635 | 4.431 | $16 \frac{3}{4}$ | 5262 | 220.35 | 14.844 |
| 57 | 16.49 | 21.647 | 4.652 | $17{ }^{4}$ | 53.40 | 226.98 | 15.065 |
| $5{ }^{4}$ | 17.27 | 23.758 | 4.874 | $17 \frac{1}{4}$ | 54.19 | 233.70 | 15.287 |
| $5 \frac{5}{4}$ | 18.06 | 25.967 | 5.095 | 172 | 54.97 | 240.52 | 15508 |
| 6 | 18.84 | 28.274 | 5.317 | $17 \frac{3}{4}$ | 55.76 | 247.45 | 15.730 |
| 64 | 19.63 | 30.679 | 5.538 | 18 | 56.54 | 254.46 | 15.952 |
| 6 | 20.42 | 33.183 | 5.760 | 181 | 57.33 | 261.58 | 16.173 |
| 64 | 21.20 | 35.784 | 5.982 | $18 \frac{1}{2}$ | 58.11 | 268.80 | 16.395 |
| 7. | 21.99 | 38.484 | 6.203 | $18 \frac{3}{4}$ | 58.90 | 276.11 | 16.616 |
| 71 | 22.77 | 41.282 | 6.425 | 19 | 69.69 | 283.52 | 16.838 |
| $7 \frac{1}{2}$ | - 23.56 | 44.178 | 0.616 | 191 | 60.47 | 291.03 | 17.055 |
| 78 | 24.34 | 47.173 | 6.868 | $19 \frac{1}{2}$ | 61.26 | 298.64 | 17.281 |
| 8 | 25.13 | 50.265 | 7.089 | 193 | 62.04 | 306.35 | 17.502 |
| 87 | 25.91 | 53.456 | 7.311 | 20 | 62.83 | 314.16 | 17.724 |
| 8 | 26.70 | 56.745 | 7.532 | 204 | (3).61 | 322.06 | 17.946 |
| $8^{8}$ | 27.48 | 60.181 | 7.754 | $20 \frac{2}{2}$ | 64.40 | 330.06 | 18.167 |
| 9 | 28.27 | 63.617 | 7.976 | 20 | 65.18 | 338.16 | 18.389 |
| 91 | 29.05 | 67.200 | 8.197 | 21 | 65.97 | 346.36 | 18.610 |
| 93 | 29.84 | 70.882 | 8.419 | 211 | 66.75 | 354.65 | 18.832 |
| $9 \frac{3}{4}$ | 30.63 | 74.662 | 8.640 | 212 | 67.54 | 363.05 | 19.053 |
| $10^{4}$ | 31.41 | 78.539 | 8.862 | 214 | 68.32 | 371.54 | 19.275 |
| 101 | 32. 20 | 82.516 | 9.083 | 24 | 69.11 | 380.13 | 19.496 |
| 10년 | 32.98 | 86.590 | 9.305 | 224 | 69.90 | 388.82 | 19.718 |
| $11 . \frac{8}{4}$ | 33.77 | 90.762 | 9.526 | 22, | 70.68 | 397.60 | 19.940 |
| 11 | 34.55 | 95.033 | 9.748 | 223 | 71.47 | 406.49 | 20.161 |
| 111 | 35.34 | 99.402 | 9.970 | 23 | 72.25 | 415.47 | 21.383 |
| 112 | 36.12 | 103.86 | 10.191 | 234 | 73.04 | 424.55 | 20.604 |

CIRCLES.

| Dlam. | Clircum. | Area. | Side of equal square. | Dlam. | Circum. | Ares. | Side of equal aquare |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 23. | 73.82 | 433.73 | 20.826 | 36 | 113. | 1017.8 | 31.504 |
| $23 \frac{1}{4}$ | 74.61 | 443.01 | 21.047 | 361 | 113.8 | 1032.0 | 32.125 |
| 24 | 75.39 | 452.39 | 21.269 | $361 \frac{2}{2}$ | 114.6 | 1046.3 | 39.347 |
| $24 \frac{1}{4}$ | 76.18 | 461.86 | 21.491 | 363 | 115.4 | 1060.7 | 32.508 |
| 24 | 76.96 | 471.43 | 21.712 | $37^{*}$ | 116.2 | 11775.2 | 32.790 |
| 214 | 77.75 | 481.10 | 21.934 | 374 | 117. | 1089.7 | 33.011 |
| 25 | 78.54 | 490.87 | 22.155 | $37 \frac{1}{2}$ | 117.8 | 1104.4 | 3 B .233 |
| 254 | 79.32 | 500.74 | 22.377 | $37 \frac{3}{4}$ | 118.6 | 1119.2 | 33.455 |
| $25 \frac{1}{2}$ | 80.11 | 510.70 | 22.598 | 38 | 119.3 | 1134.1 | 33.676 |
| 264 | 81.89 | 520.77 | 22.820 | 381 | 120.1 | 1149.0 | 33.898 |
| 26 | 81.68 | 530.93 | 23.041 | $38 \frac{1}{2}$ | 120.9 | 1164.1 | 34.119 |
| 264 | 82.46 | 541.18 | 23.263 | $38 \frac{3}{4}$ | 121.7 | 1179.3 | 84.341 |
| $26 \frac{1}{6}$ | 83.25 | 551.54 | 23.485 | $33^{4}$ | 122.5 | 1194.5 | 34.562 |
| 264 | 84.03 | 562.00 | 23.706 | 391 | 123.3 | 1209.9 | 34.784 |
| 27 | 84.82 | 572.55 | 23.928 | 39) $\frac{4}{2}$ | 124. | 1225.4 | 35.605 |
| $27 \frac{1}{4}$ | 85.60 | 583.20 | 24.149 | 398 | 124.8 | 1240.9 | 35.227 |
| 25 | 86.39 | 593.95 | 24.371 | $40^{4}$ | 125.6 | 1256.6 | 35.449 |
| ${ }^{6} 7$ | 87.17 | 604.80 | 24.592 | 401 | 126.4 | 1272.3 | 35.670 |
| 28 | 87.96 | 615.75 | 24.814 | $40 \frac{1}{2}$ | 127.2 | 1288.2 | 85.892 |
| 281 | 88.75 | 626.79 | 25.035 | $40 \frac{3}{4}$ | 128. | 1304.2 | 36.113 |
| 28. | 89.53 | 637.94 | 25.257 | 41 | 128.8 | 1320.2 | 36.335 |
| 283 | 9 U .32 | 649.18 | 25.479 | 414 | 129.5 | 1336.4 | 36.556 |
| 29 | 91.10 | 660.52 | 25.700 | $41 \frac{1}{3}$ | 130.3 | 1352.6 | 36.778 |
| 297 | 91.89 | 671.95 | 25.922 | $4!\frac{3}{4}$ | 131.1 | 1369.0 | 36.999 |
| 29. | 92.67 | 683.49 | 26.144 | 42 | 131.9 | 1385.4 | 37.221 |
| 293 | 93.46 | 695.12 | 26.365 | 424 | 132.7 | 1401.9 | 37.443 |
| 30 | 94.24 | 706.86 | 26.586 | $42 \frac{1}{2}$ | 133.5 | 1418.6 | 37.664 |
| 301 | 95.03 | 718.69 | 26.808 | $4 \because \frac{2}{4}$ | 134.3 | 1435.3 | 37.886 |
| $30 \frac{1}{2}$ | 95.81 | 730.61 | 27.029 | 43 | 135. | 1452.2 | 38.107 |
| 304 | $96.61)$ | 742.64 | 27.251 | 434 | 135.8 | 1469.1 | 38329 |
| 31 | 97.38 | 754.76 | 27.473 | $43 \frac{1}{2}$ | 136.6 | 1486.1 | 38.550 |
| $31 \frac{1}{4}$ | 98.17 | 766.99 | 27.694 | $40 \frac{2}{4}$ | 137.4 | 1503.3 | 38.772 |
| 311 | 98.97 | 779.31 | 27.916 | 44 | 138.2 | 1520.5 | 38.993 |
| 314 | 99.74 | 791.73 | 28.137 | $44 \frac{1}{4}$ | 139. | 1537.8 | 39.215 |
| 32 | 100.0 | 804.24 | 28.359 | $44 \frac{1}{2}$ | 139.8 | 1555.2 | 39.437 |
| 321 | 101.3 | 816.86 | 28.580 | $44 \frac{3}{4}$ | 140.5 | 1572.8 | 39.658 |
| 321 | 102.1 | 829.57. | 28.802 | 45 | 141.3 | 1590.4 | 39.880 |
| 324 | 102.8 | 842.39 | 29.023 | 454 | 142.1 | 1608.1 | 40.101 |
| 33 | 103.6 | 855.30 | 29.245 | $45 \frac{3}{2}$ | 142.9 | 1625.9 | 40.323 |
| 331 | 104.4 | 868.30 | 29.467 | $45 \frac{8}{4}$ | 143.7 | 1643.8 | 40.554 |
| 332 | 105.2 | 881.41 | 29.688 | 46 | 144,5 | 1661.9 | 40.766 |
| $33{ }^{3}$ | 106. | 894.61 | 29.910 | 464 | 145.2 | 1680.0 | 40.987 |
| 34 | 106.8 | 907.92 | 30.131 | 461 | 146. | 1698.2 | 41.209 |
| 344 | 107.5 | 921.32 | 30.353 | $46 \frac{3}{4}$ | 145.8 | 1716.5 | 41.431 |
| $34 \frac{1}{2}$ | 108.3 | 934.82 | 30.574 | $47^{4}$ | 147.6 | 1734.9 | 41.652 |
| $34 \frac{3}{4}$ | 109.1 | 948.41 | 30.796 | 471 | 148.4 | 1753.4 | 41.874 |
| 35 | 109.9 | 962.11 | 31.017 | $47 \frac{1}{2}$ | 149.2 | 1772.0 | 42.095 |
| 351 | 110.7 | 975.90 | 31.289 | $47 \frac{3}{4}$ | 150. | 1790.7 | 42.317 |
| $35 \frac{1}{2}$ | 111.5 | 989.80 | 31.461 | $48^{4}$ | 150.7 | 1809.5 | 42.538 |
| 35 年 | 112.3 | 1003.7 | 31.682 | 481 | 151.5 | 1828.4 | 42.760 |


| Diam. | Clrcura. | es. | Side of equal square | Dlam. | Circum. | Area. | Side of equal square |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 481 | 152.3 | 1847.4 | 42.982 | 61 | 191.6 | 2922.4 | 54.059 |
| $48 \frac{3}{4}$ | 153.1 | 1866.5 | 43.203 | 614 | 192.4 | 2946.4 | 54.281 |
| 49 | 153.9 | 1885.7 | 43.425 | 61. | 193.2 | 2970.5 | 54.502 |
| 493 | 154.7 | 1905. | 43.646 | 613 | 193.9 | 2994.7 | 54.724 |
| $49 \frac{1}{2}$ | 155.5 | 1924.4 | 43.868 | 62 | 194.7 | 3019.0 | 54.946 |
| 49 4 | 156.2 | 1943.9 | 44.089 | (i2) | 195.5 | 3043.4 | 55.167 |
| 50 | 157. | 1963.5 | 44.311 | $62 \frac{1}{2}$ | 196.3 | 3067.9 | 55.389 |
| 51 星 | 157.8 | 1983.1 | 44.532 | 623 | 147.1 | 3.92 .5 | 55.610 |
| $50 \frac{1}{4}$ | 158.6 | 2002.9 | 44.754 | $63^{4}$ | 197.9 | 3117.2 | 55.833 |
| 514 | 159.4 | 2022.8 | 44.976 | 6314 | 198.7 | 3142.0 | 56.053 |
| 51 | 160.2 | 2042.8 | 45.197 | $63 \frac{1}{2}$ | 199.4 | 3166.9 | 56.275 |
| 517 | 161. | 2062.9 | 45.419 | $63: 38$ | 200.2 | 3191.9 | 56.496 |
| $51 / 2$ | 161.7 | 2083.0 | 45.640 | $64^{4}$ | 201. | 3216.9 | 56.718 |
| 513 | 162.5 | 2103.3 | 45.862 | 64 | 201.8 | 3242.1 | 56.940 |
| 52 | 163.3 | 2123.7 | 46.083 | 64 | 202.6 | 3267.4 | 57.161 |
| 524 | 164.1 | 2144.1 | 46.305 | $64 \frac{3}{4}$ | 203.4 | 3292.8 | 57.383 |
| 54 | 164.9 | 2164.7 | 46.526 | 65 | 204.2 | 3318.3 | 57.604 |
| 523 | 165.7 | 2185.4 | 46.748 | 651 | 204.9 | 3343.8 | 57.826 |
| 63 | 166.5 | 2206.1 | 46.970 | 65 , | 205.7 | 3369.5 | 58.047 |
| 531 | 167.2 | 2227.0 | 47.191 | $65 \frac{3}{4}$ | 206.5 | 3395.3 | 58.269 |
| 531 | 168. | 2248.0 | 47.413 | $66^{4}$ | 207.3 | 3421.2 | 58.490 |
| 534 | 168.8 | 2269.0 | 47.634 | 663 | 208.1 | 3447.1 | 58.712 |
| 54 | 169.6 | 2290.2 | 47.856 | $66 \frac{1}{2}$ | 208.9 | 3473.2 | 58.934 |
| 548 | 170.4 | 2311.4 | 48.077 | $66 \frac{3}{4}$ | 209.7 | 3499.3 | 59.155 |
| 54. | 171.2 | 2332.8 | 48.299 | $67^{4}$ | 210.4 | 3525.6 | 59.377 |
| 54. | 172. | 2354.2 | 48.520 | 671 | 211.2 | 3552.0 | 59.598 |
| 55 | 172.7 | 2375.8 | 48.742 | 67 | 212. | 3578.4 | 59.820 |
| 554 | 173.5 | 2397.4 | 48.964 | $67 \frac{3}{4}$ | 212.8 | 3605.0 | 60.041 |
| 5 | 174.3 | 2419.2 | 49.185 | 68 | 213.6 | 3631.6 | 60.263 |
| 5 | 175.1 | 2441.0 | 49.407 | 688 | 214.4 | 3658.4 | 60.484 |
| 56 | 175.9 | 2463.0 | 49.628 | 68. | 215.1 | 3685.2 | 60.706 |
| 567 | 176.7 | 2485.0 | 49.850 | $68 \frac{3}{4}$ | 215.9 | 3712.2 | 60.928 |
| 562 | 177.5 | 2507.1 | 50.071 | 69 | 216.7 | 3739.2 | 61.149 |
| ${ }^{4}$ | 178.2 179. | 2529.4 | 50.293 | 697 | 217.5 | 3766.4 | 61.371 |
|  | 179.8 179.8 | $\underline{2551.7}$ | 50.514 | 69 | 218.3 | 3793.6 | 61.592 |
| $57 \frac{1}{2}$ | 180.6 | 2596.7 | $50.9,8$ | 70 | 219.1 219.9 | 3821.0 | 61.814 |
| 678 | 181.4 | 2619.3 | 51.179 | 704 | 220.6 | 38875 | 62.035 |
| 58 | 182.2 | 2642.0 | 51.401 | $70 \frac{1}{2}$ | 221.4 | 3903.6 | 62.478 |
| 681 | 182.9 | 2664.9 | 51.622 | 743 | 222.2 | 3981.3 | 62.700 |
| 58. | 183.7 | 2687.8 | 51.844 | 71 | 223. | 3959.2 | 62.922 |
| ${ }_{69} 68{ }^{4}$ | 184.5 | 2710.8 | 52.065 | 711 | 223,8 | 3987, 1 | 63.143 |
| 69 59 | 185.3 | 2733.9 | 52.287 | 213 | 224.6 | 4015, 1 | 63.365 |
| 598 | 186.1 | 2757.1 | 52.508 | 713 | 225.4 | 40432 | 63.586 |
| $59 \frac{12}{2}$ 598 508 | 186.9 | 2780.5 | 52.730 | 72 | 226.1 | 4071.5 | 63.808 |
| ${ }_{60}{ }^{4}$ | 187.7 188.4 | 2803.9 | 52.952 | 724 | 226.9 | 4099.8 | 64.029 |
| 601 | 188.4 189.2 | 2827.4 2851.0 | 53.173 53.395 | $72 \frac{1}{2}$ | 247.7 2285 | 4128.2 | 64.251 |
| 604 | 19 n . | 2874.7 | $53.61{ }^{5}$ | 724 | 2285 229.8 29. | 4156.7 4185 | 64.473 |
| Cl $\frac{4}{4}$ | 190.8 | 2898.6 | 53.838 | 73 | 230.1 | 4214.1 | ${ }_{64.916}$ |


| Diam. | Circum. | Area. | Side of equal equare. | Dlam. | Circum. | Area. | Side of equal square. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 731. | $23) .9$ | 4242.9 | 65.197 | 86 | 270.1 | 5808.8 | 76.215 |
| $73 \frac{3}{4}$ | 231.6 | 4271.8 | 65.359 | 861 | 270.9 | 5842.6 | 76.437 |
| 74 | $2: 32.4$ | 4300.8 | 65.580 | $86 \frac{1}{2}$ | 271.7 | 5876.5 | 76.658 |
| 744 | 233.2 | 4329.9 | 65.802 | 86姩 | 272.5 | 5910.5 | 76.880 |
| 742 | 234. | 4359.1 | 66.023 | $87^{2}$ | 273.3 | 5944.6 | 77.101 |
| 743 | 234.8 | 4388.4 | 06.245 | 871 | 274.1 | 5978.9 | 77.323 |
| 75 | 23.5 .6 | 4417.8 | 66.467 | $87 \frac{1}{2}$ | 274.8 | 6013.2 | 77.544 |
| $75 \frac{1}{4}$ | 236.4 | 4447.3 | 66.688 | $87 \frac{8}{4}$ | 275.6 | 6047.6 | 77.766 |
| $75 \frac{1}{2}$ | 237.1 | 4476.9 | 66.910 | 88 | 276.4 | 6082.1 | 77.987 |
| 758 | 237.9 | 4506.6 | 67.191 | $88 \frac{1}{4}$ | 277.2 | 6116.7 | 78.209 |
| 76 | 238.7 | 4536.4 | 67.353 | $88 \frac{1}{2}$ | 278. | 6151.4 | 78.431 |
| 76 | 239.5 | 4566.3 | 67.574 | $88 \frac{4}{4}$ | 278.8 | 6186.2 | 78.652 |
| 768 | 240.3 | 4596.3 | 67.796 | 89 | 279.6 | $62 \geqslant 1.1$ | 78.874 |
| 763 | 241.1 | 4626.4 | 68.017 | 897 | 280.3 | 6256.1 | 79.095 |
| $77^{4}$ | 241.9 | 4656.6 | 68.239 | 89를 | 281.1 | 6291.2 | 79.317 |
| 771 | 242.6 | 4686.9 | 68.461 | $89 \frac{3}{4}$ | 281.9 | 6326.4 | 79.538 |
| 772 | 243.4 | 4717.3 | 68.682 | $90^{4}$ | 282.7 | 6361.7 | 79.760 |
| 774 | 244.2 | 4747.7 | 68.904. | 904 | 283.5 | 6397.1 | 79.981 |
| 78 | 215. | 4778.3 | 69.125 | $90 \frac{1}{2}$ | 284.3 | 6432.6 | 80.203 |
| 789 | 24.7 .8 | 4809.0 | 69.347 | 901 | 285.1 | 6468.2 | 80.425 |
| 78. | 246.6 | 4839.8 | 69.568 | 91 | 285.8 | 6503.8 | 80.646 |
| 783 | 247.4 | 4870.7 | 69.790 | $91 \frac{1}{4}$ | 286.6 | 6539.6 | 80.868 |
| 79 | 248.1 | 4901.6 | 70.011 | 91 $\frac{1}{2}$ | 287.4 | 6575.5 | 81.089 |
| 791 | 248.9 | 4932.7 | 70.233 | $91 \frac{3}{4}$ | 288.2 | 6611.5 | 81.311 |
| $79 \frac{1}{2}$ | 2497 | 4963.9 | 70.455 | 92 | 289. | 6647.6 | 81.532 |
| 793 | 251.5 | 4995.1 | 70.676 | $92 \frac{1}{4}$ | 289.8 | 6683.8 | 81.754 |
| $80^{2}$ | 251.3 | 5026.5 | 70.898 | $92 \frac{1}{2}$ | 290.5 | 6720.0 | 81.975 |
| 801 | 2.2 .1 | 5058.0 | 71.119 | 923 | 291.3 | 6756.4 | 82.197 |
| $80 \frac{1}{3}$ | 252.8 | 5089.5 | 71.341 | 93 | 292.1 | 6792.9 | 82.419 |
| 808 | 25.3 .6 | 5121.2 | 71.562 | 938 | 292.9 | 6829.4 | 82.640 |
| 81 | 2.34 .4 | 5153.0 | 71.784 | $93 \frac{1}{2}$ | 293.7 | 6866.1 | 82.862 |
| $81 \frac{1}{4}$ | 25.5 .2 | 5184.8 | 72.005 | $93 \frac{3}{4}$ | 294.5 | 6902.9 | 83.083 |
| $81 \frac{1}{2}$ | 256. | 5216.8 | 72.227 | 94 | 295.3 | $6!39.7$ | 83.305 |
| 818 | 256.8 | 5248.8 | 72.449 | $94 \frac{1}{4}$ | 296. | 6776.7 | 83.526 |
| 82 | 257.6 | 5281.0 | 72.670 | $94 \frac{1}{2}$ | 296.8 | 7013.8 | 83.748 |
| 824 | 258.3 | 5313.2 | 72.892 | 913 | 297.6 | 7050.9 | 83.970 |
| $82 \frac{1}{2}$ | 269.1 | 5345.6 | 73.113 | 95 | 298.4 | 7088.2 | 84.191 |
| 823 | 259.9 | 5378.0 | 73.335 | 9.51 | 299.2 | 7122.5 | 84.413 |
| 83 | 260.7 | 5410.6 | 73.566 | 951 | 310. | 7163.0 | 84.634 |
| 831 | 261.5 | 5443.2 | 73.778 | $95 \frac{3}{4}$ | 300.8 | 7200.5 | 84.856 |
| 833 | 262.3 | 5476.0 | 73.999 | 96 | 301.5 | 7238.2 | 85.077 |
| 8338 | 263.1 | 5508.8 | 74.221 | 961 | 302.2 | 7275.9 | 85.299 |
| 84 841 | 263.8 | 5541.7 5574 | 74.443 | 961 | 303.1 | 7313.8 | 85.520 |
| 844 | 264.6 | 5574.8 | 74.664 | 963 ${ }^{4}$ | 303.9 | 7351.7 | 85.742 |
| $84 \frac{1}{2}$ | 265.4 | 5607.9 | 74.886 | 97 | 304.7 | 7389.8 | 85.964 |
| $84 \frac{3}{4}$ | 266.2 | 5641.1 | 75.107 | 974 | 305.5 | 7427.9 | 86.185 |
| 85 | 267. | 5674.5 | 75.329 | 97산 | 306.3 | 7466.2 | 86.407 |
| 854 | 2137.8 | 5707.9 | 75.550 | $97 \frac{3}{4}$ | 307. | 7504.5 | 86.628 |
| $85 \frac{1}{2}$ | 268.6 | 5741.4 | 75.772 | 98 | 307.8 | 7542.9 | 86.850 |
| 85. | 269.3 | 5775.0 | 75.993 | 981 | 308.6 | 7581.5 | 87.071 |


| Dlam. | Circum. | Area. | Side or equal square | Dinm. | Circum. | Area. | side of equal square |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $98 \frac{1}{2}$ | 309.4 | 7620.1 | 87.293 | $99 \frac{1}{2}$ | 312.5 | 7775.6 | 88.179 |
| 988 | 310.2 | 7658.8 | 87.514 | $99 \frac{3}{4}$ | 313.3 | 7814.7 | 88.401 |
| 99 | 311. | 7697.7 | 87.736 | 100 | 314.1 | 7853.9 | 88.622 |
| 994 | 311.8 | 7736.6 | 87.958 |  |  |  |  |

To find, by means of the Table, the square or circle that will contain the area of a board or surface of given length and width.

Rule.-Find the area of the board or surface by multiplying its width by its length, and in the columns opposite the area thus found, headed respectively "Diam.," "Circum.," and "Side of Equal Square," will be found the dinensions of the circle and square that contains the area.

Example.-What is the side of a square, and what the diameter and circumference of a circle, that will contain the same area as a board that is 22 inches wide by 12 feet long?

Solution. -22 inches, width, $\times 144$ inches, length,$=3168$ square inches, area of board: Then, in the table, opposite the area of 3166.9 (the nearest number to 3168) under the columns headed respectively "Diam.," "Circum.," and "Side of Equal Square," will be found $63 \frac{1}{2}$ inches, diameter, 109.4 inches, circumference, and 56.275 inches, side of square. Ans.

## SQUARES, CUBES, AND ROOTS.

## Table of Squares, Cubes, and Square and Cube Roots, of all numbers from 1 to 1000.

| No. | Square. |
| :---: | :---: |
| 1 | 1 |
| 2 |  |
| 8 | 8 |
| 4 | ${ }^{6}$ |
| 6 | 25 |
| 6 | 88 |
| 7 | 49 |
| \% | 64 |
| 9 | 81 |
| 10 | 100 |
| 11 | 121 |
| 12 | 144 |
| 13 | 169 |
| 14 | 108 |
| 16 | 225 |
| 16 | 258 |
| 17 | 289 |
| 18 | . 824 |
| 19 | 361 |
| 20 | 4. 0 |
| 21 | 471 |
| 22 | 484 |
| 23 | 627 |
| 24 | 676 |
| 25 | 625 |
| 26 | 87 n |
| 27 | 729 |
| 28 | 784 |
| 29 | 841 |
| 30 | 900 |
| 31 | 981 |
| 82 | 10.4 |
| 33 | 1029 |
| 34 | 116 B |
| 35 | 1-25 |
| 3 f | 129 |
| 37 | 3369 |
| 38 | 1444 |
| 39 | 1521 |
| 40 | 1600 |
| 41 | 1881 |
| 42 | 1784 |
| 43 | 1819 |
| 44 | 1938 |
| 46 | 2025 |
| 48 | 2116 |
| 47 | $22 \cdot 9$ |
| 48 | 2.304 |
| 49 | 2401 |
| 6 | 2500 |
| 61 | 2601 |
| 62 | 2704 |
| 53 | 2869 |


| Cube. | Bg. Root, |
| :---: | :---: |
| 1 | 1. |
| 8 | $1.41421 ?$ |
| 27 | 1.732060 |
| 61 |  |
| 125 | 2.238068 |
| 216 | $2.4 \$ 9489$ |
| 843 | 2.6457:31 |
| 612 | 2.628427 |
| 729 |  |
| 1000 | 3.162277 |
| 131 | 3.818824 |
| 1728 | 3.464101 |
| 2197 | 3. $\mathbf{3} 05 \div 51$ |
| 2744 | 3.7418:7 |
| 33:6 | 3.072983 |
| 4098 | 4. |
| 4913 | 4.123105 |
| 6882 | 4.242640 |
| 6854 | 4.3583 .18 |
| 8000 | 4.41213 r |
| 9261 | 4.682575 |
| $1064^{8}$ | 4.690415 |
| $1216 i$ | 4.795421 |
| 1384 | 4.898979 |
| 158:5 |  |
| 1757 ti | 5.039019 |
| 19633 | 6.198152 |
| 21950 | $6.2+1502$ |
| 21399 | \$.385154 |
| $2: 010$ | 6.47\% 226 |
| 29791 | 6.667784 |
| 32764 | 5.668364 |
| 359.67 | $6.74166:$ |
| 89304 | 6.830951 |
| 42375 | 5816079 |
| $4 \times 856$ | 6. |
| 50653 | 6.092782 |
| 64872 | 6.164414 |
| 89819 | 0.241996 |
| 81000 | 0.324555 |
| 68921 | 6.4133124 |
| 74088 | $6.48 \cup 740$ |
| 7907 | 6.657438 |
| $851 \times 4$ | 0.833219 |
| 91126 | $6.70 \times 213$ |
| 9:336 | 6.782 i30 |
| 10382 : | 6.855854 |
| 110592 | $0.9282 \cup 3$ |
| 117849 |  |
| 125000 | 7.071087 |
| 132851 | 7.141428 |
| 140 t 08 | 7.211102 |
| 148877 | 7.280109 |


| Cu. Root. |
| :---: |
| 1. |
| 1.250921 |
| 1.442\%50 |
| 1687401 |
| 1.74997n |
| 1.817121 |
| $1.91 \% 934$ |
| 2. |
| 2.050084 |
| $2.12+436$ |
| 2.233980 |
| $2.2 \times 9428$ |
| 2.461335 |
| 2.410142 |
| - 4.463212 |
| 2.519842 |
| 2. $67122 \times 2$ |
| 2620741 |
| 2.848402 |
| 2.714418 |
| 2.7641128 |
| 2.8020.59 |
| 2.443467 |
| $2.88+499$ |
| 2924018 |
| 2.962490 |
| 3. |
| 3.036589 |
| 3.07.315 |
| $3.10 \% .282$ |
| 3.141381 |
| 3.174802 |
| 3.207534 |
| 3.239812 |
| $8.2710{ }^{6} 6$ |
| 3201927 |
| 3.83'222 |
| 8.861975 |
| 3.391211 |
| $3.41995 \%$ |
| 8.448217 |
| 3.476127 |
| 8.503348 |
| 3.530348 |
| 3.658843 |
| 3.68: 048 |
| 3. 60882 ' |
| 3. 3 3 241 |
| 3.659304 |
| 3.684031 |
| $3.708+30$ |
| 3.732511 |
| 3,756226 |


| No. | Square. |
| :---: | :---: |
| 64 | 2914 |
| 56 | 302 ' |
| 56 | 3136 |
| 67 | 3249 |
| 6. | 3364 |
| 59 | 54.1 |
| co | 3600 |
| 61 | 3721 |
| 62. | 384 |
| 68 | 3969 |
| 64 | 4096 |
| 66 | 42.5 |
| 66 | 4356 |
| 67 | 4484 |
| 68 | 462 t |
| 69 | 4761 |
| 70 | 4900 |
| 71 | $801^{\circ}$ |
| 72 | $6!84$ |
| 73 | 5329 |
| 74 | 6476 |
| 75 | 6625 |
| 76 | 6776 |
| 77 | 6938 |
| $7 \times$ | 6064 |
| 79 | 6241 |
| 80 | 6100 |
| 81 | 6561 |
| 82 | 87-4 |
| 83 | 6889 |
| $8+$ | 7056 |
| 85 | 722. |
| 68 | 7396 |
| $8{ }^{\text {T }}$ | 7569 |
| 8 8 | 7744 |
| 89 | 7921 |
| 90 | 8100 |
| 91. | 8281 |
| 92 | $8+64$ |
| 93 | 8589 |
| 94 | 8836 |
| 95. | 9025 |
| 96 | 9216 |
| 97 | 9409 |
| 98 | 9604 |
| 9.9 | 9801 |
| 100 | 10040 |
| 101 | 10201 |
| 162 | 10404 |
| 103 | 10604 |
| 104 | 10816 |
| 105 | 11025 |
| 108. | 11238 |


| Cube. | Bq Root. | Cu. Root |
| :---: | :---: | :---: |
| 157464 | 7348480 | 3.759763 |
| 166375 | 7.416198 | 3.802953 |
| 175616 | $7.483 \leq 14$ | 3.825862 |
| 1*5193 | 7.519334 | 3.848501 |
| 195112 | 7.615773 | 3.870877 |
| 205379 | 7.681145 | 3.892996 |
| 216000 | 7.74596 'i | 3.914867 |
| 226981 | 7.810249 | 3.936497 |
| 23832 s | 7.87460 | 3.957392 |
| 230017 | 7.937253 | 3.97957 |
| 2 2144 | 8. | 4. |
| 27462 : | 8.052257 | 4. 220726 |
| 297496 | 8.1210 i- | 4.041210 |
| 30063 | 8.185352 | 4.061548 |
| 3.4432 | 8.216\%11 | 4.081668 |
| 3.38609 | 8.308823 | 4.101566 |
| $3+3000$ | 8.368800 | 4121285 |
| 357911 | 8.426149 | 4.140318 |
| 378248 | 8.485:81 | 4.160168 |
| 389017 | 8.544003 | 4.179339 |
| 405224 | 8.60 .325 | 4.198336 |
| 421975 | 8.630254 | 4.217163 |
| 438976 | 8.717797 | 4.235824 |
| 456515 | 8.754984 | 4.251321 |
| 474652 | 8,831760 | 4272689 |
| 493039 | 8.888194 | 4.290841 |
| 612000 | $8.94+271$ | $4.3058: 0$ |
| 631411 | 9. | 4.336749 |
| 5.51388 | 9.055385 | 4.94451 |
| 571787 | 9.110483 | 4.362071 |
| 692704 | ${ }^{9} 9.16$ 1515 | 4.870519 |
| 81412 | 9.219544 | 4.898830 |
| 686056 | 9.273818 | 3.414005 |
| 659603 | 9.327379 | 4.431647 |
| 681.72 | 9.380831. | 4477960 |
| 704969 | 9.433981 | 4.464745 |
| 729000 | 9.486833 | 4481401 |
| 753571 | 9.539392 | 4.497942 |
| 778688 | 9.591863 | 4.511357 |
| 804357 | 9643650 | 4.630656 |
| 830584 | 8.695359 | 4.546838 |
| 857375 | 0.748794 | 4582903 |
| 884736 | 9.797959 | 4.677857 |
| 912874 | 9.848857 | 4.691701 |
| 641192 | 9.899494 | 4.610438 |
| 970:99 | 9.949874 | 4.620065 |
| 1000000 | 10. | 4.641588 |
| 103020 | 10.049875 | 4.657010 |
| 1061208 | 10.099504 | 4.872330 |
| 10 527:37 | $10.1+8891$ | 1.687548 |
| 1124864 | 10.198034 | 4.702669 |
| 1157626 | $10.246 \div 50$ | 4.717694 |
| 1191018 | 10.295630 | 4.732824 |

$3(1)$ SQUARES, CLBES, AND ROOTS.

|  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 107 |  | 12250 | 10.34 | 4.74 | 172 |  | 8 | $13.114877$ |  |
|  | 11 | 1259:12 | 10.392 | 4.7622\%3 | 173 | 29 | 6177717 | ${ }^{13} .152946$ |  |
|  | 1158 | 11995 | 10 | $3.77 \times 856$ | 174 |  |  | 13.190.0 0 | 5.668770 |
| 110 | 120 | 133000 | 10.488 | 4.7914:0 | 175 |  |  | 13.208856 | 5.593445 |
| 111 | 1282 | 1367631 | 10.535 | 4.805896 | 176 | 30976 | 6451736 | 13226499 | 5.1040i9 |
| 11 | 12.54 |  | 10.5930 |  | 177 | 31329 | 654) ${ }^{\text {c }}$ 3: | 13.30+134 | $5.61+673$ |
| 11 | 1:769 | $14+$ | $10.6301+5$ | 4.884 | 176 | $\begin{aligned} & 31+8,8 \\ & 32 \end{aligned}$ | 5639754 673589 | 13.3+1664 | 6.620228 |
| 111 | 1:4be | 156) | 10.70 | 4.8769 | 181 | 32761 | 6929741 | 13.43ّ6.4 |  |
|  | 13658 | 1601613 | 10.616 | 4.8909 | 162 | 33124 | co2 | 13.49 |  |
| 118 | 1.924 | 1643 | 10.86 | 4.8018 | 18 |  | 6128487 | 13 6:7749 | 5.675411 |
|  | 1+1/fi | 16851 | 10.908 | 4.9,8 | 184 |  | 62 | 13.56 | 5.687734 |
|  | 14.00 |  | 10.054 | 4.9324 |  | 3t. $2 \overline{5}$ | 8331 | 13.60 |  |
| 121 | 1164 | 177.5 | 11 | 4.94 | 186 | 34 | $6 \pm 34$ | 13.633181 | 5.708267 |
|  | 148 | 18154 | 11.015 | 4.958 i |  | 34969 | 65392 | 13.674794 | 0.718479 |
| 12: | 15128 | 18608 |  | 4.973190 | 168 | ${ }^{35344}$ | 66454 | 13.811 | 5.728654 |
| 12. | 153:6 | 190 | 11.13 | 4986631 | 189 |  | 675 | 13.747 | 6.738791 5.78897 |
| 125 | ${ }_{15876}^{1564}$ | $195312:$ 2000376 | 11.180339 |  | 190 | 361 364 | $88.5(014$ | $\left\|\begin{array}{l} 13.781088 \\ 13.8 .0275 \end{array}\right\|$ | $5.7+8897$ <br> 5.754965 |
|  | 16976 1612 | 2000376 <br> 2019383 <br> 1 | ${ }_{11}^{11.2249}$ | ${ }_{6}^{6.013}$ | $\begin{aligned} & 191 \\ & 192 \end{aligned}$ | ${ }_{36864}$ | 6977871 7077888 | 13.85648 | 5.708998 |
|  | 1638 | ¢0971 | 11.3137 | 5.0396 | 193 | 3724 | 7189057 | 13.842414 |  |
|  | 1661 | $21+6$ | 11.35 \% 816 | 5.1527 |  | 3763 | 7301 | 13.9\%8 | 5.788960 |
|  | 1640 | 21970 | 114017 | 5.0й5\% | 19 | 382 | 7414 | 13.9 | 5.79689, ${ }^{\text {d }}$ |
|  | 1716 | 2248 | 11.41552 | 5.078 | 19 | 3341 | 752953 ' |  | 5.808766 |
| 13. | 1742 | 22999 | 11.4891 | 5. | 19 | 388 | 7646 | 14.03:668 |  |
| 135 | 18222 | 2460 | 11.6 | 5. | :0 | 4000 |  | 14.142335 |  |
| ${ }^{131}$ | $18 \pm$ | $2 \cdot 1$ | 11.68 | 5.14 | 201 | 4040 | 81206 | 14.1774 |  |
|  | 187.9 | 25713 | 11.7446 | 1551 | 20 |  | 824240 | 14.21 | 5.867754 |
| 138 | 19044 | 26280 | $11.74{ }^{\text {a }} 34$ | 5.1678 |  | 41 |  | 14.2 |  |
|  | 192 | 85 | .7898 | 6. 801 | 20 | 41 | 8489 | 14.282 | 5.886765 |
| 14 | 19000 | 27440 | 11.83 | 5.1924 | 20 | 420 | 86151 | 14.3178 | 6.896368 |
| 14 | 1381 | 23032 | 1187434 | 52048 | 208 |  | 874 | 14.352 |  |
| 14 | $2{ }^{14} 64$ | 23662 | 11.9163 | 5.2171 | 20 | 42349 | 8869 | 14.388 | 5. 9154881 |
| 14 | 20449 | 2924 | 11.9582 | 522 | 20 | 432 | 899 | 14.43220. | 6.924991 |
| 14. | 20:5 | 24859 |  | 5.2414 | 209 | 43681 | 91233 | 14.45683: | 5. 9344473 |
| 14 | 2.0 | , | 12.04 | 5.2.35 | :10 | 41100 | 926100 | 14.491 |  |
| 146 | 213 | 3112136 | 12.08 | 5.2656 | 211 | 44551 | 9393931 | 14. | 5.9 3.341 |
| 14:7 | 2 fios | 31765 | 12124 | 5.2776 | 21 | ${ }_{4536}$ | ${ }_{9663}^{95}$ |  |  |
| 146 | $2: 9614$ |  | 12.1 | 5.2895 | 21 | 4536 | ${ }_{980}^{9635934}$ | 14.59459 $1+6.8138$ | ${ }_{5}^{5.961428}$ |
| 15 | ${ }_{2}^{2} 250$ | 335 | 12.2 | 5.313 | 215 | 46225 | 9938875 | $1+662378$ | 5.99J725 |
| 15 | 22001 | $34+23$ | 122 | 6.3251 | 216 | 486 | 1C07799 | 14.6969 |  |
| 15: | :31.4 | 3511808 | 12.32 | 5.3388 | 21 | 47 | 1821831 | 14.780 | 6.009244 |
| 15. | 23403 | 3361577 | 12.369 | $5.3+64$ |  |  | 103:0 | 14.7648 | 6.08848 |
|  | 2ste | 㖪228 | 12.40 | 53601 | 212 |  | 1000 | 14.79 |  |
| $15:$ | 24023 | ${ }^{2723875}$ | 12.4 | 5.3718 | 22 | 484 | 108480 | 14. | 6.0.8811 |
| 156 | ${ }_{2}^{2+566}$ | 378 | 12489986 | 53832 |  |  | 107938 |  |  |
| 157 | 24549 <br> 24064 <br> 2 |  | 12.6298 | 6. 3946 |  | $49: 2$ | ${ }^{16941805}$ |  | 6.05948 6.04126 |
| 150 | 25281 | 40196 | 12.609 | 6.475 | 场 |  | 112394 | 14.9666 | 6.073637 |
| 180 | 2600 | 403600 | 12. | 5.4288 | 22 | 60 | 1139 |  |  |
| 16. | 2;92 | 417328 |  | 5.4401 | 22 | ${ }^{611}$ | 11543 | 15.033 |  |
| 16 | ${ }_{25}{ }^{2} 84$ | ${ }_{4}^{425152}$ | 12.7279 | 64.13 |  |  | 1169 |  |  |
| 168 | 28319 26898 | 433074 441094 | $\begin{aligned} & 12.7971 \\ & 12.808 \end{aligned}$ | $6.4625$ | 2 | 51984 | 11852352 1208989 | 15.13.74 | 8.118032 |
| 16 | $27 / 25$ | 449 | 12.845 | 5.44 | $2 E$ |  | $121 \mathrm{B7}$ ( | 15.165 | 8.126925 |
| 16 | 27.3. 4 | 4574246 |  | 5.4958 | 23 | 5338 | 12326391 | 15.198 | . 133702 |
| 167 | 27888 | 475746 | 12.922 | 5.5068 |  | 639: | 12487188 | 15.23154 | 6.11+834 |
| 168 |  | 4741832 | 12.961 | 5.51 |  |  | 126 |  | 8.158448 |
| 168 | 23301 |  | 13 | 5.5 | 23 | 54 | 12812904 | 15.297058 | 9 |
| 170 | 42000 |  | 5. | . | 23 | 6522 | 12877675 | 15.32970 | 8.171005 |
| 171 | 29.241 | 5000 | 13.076 | 5.660 | 238 | 5588 | 181442 | 15.38 | . 179747 |


| No. | Squ |  |  |  |  |  | Cub | 8q. Root. | Cu. Root. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 237 | 1.61 | 1331205\% | 15.89480 | 6.1 |  |  | 27643608 | 17.378147 | 6.708172 |
| 238 | 56644 | 13481272 | 15.42724s | 6.197154 | 363 | $918{ }^{\text {9 }}$ | 27-18125 | 17.406595 | 6716549 |
| 239 | 57121 | 13651918 | 15459824 | 6.205821 | $\mathrm{S}_{3}$ | 92416 | 25194484 | 17.485596 | 6.728450 |
| 2:0 | 57.00 | 1382 | 15.491983 | 3.24464 | 30 | 93025 | $23726: 5$ | 17.464249 | 9.731316 |
| $2+1$ | 5808 | 1399752 | 15.624174 | 6.22.jU83 | 301 | 98636 | \%866261t | $17.49285{ }^{\text { }}$ | 6.738645 |
| 242 | 68:61 | $141724{ }^{6}$ | 15.556 .344 | 6.231678 | 30 | 942 | 2893444 | 17.521416 | 6.745997 |
| 248 | 64049 | 14:34,90. | 15.688157 | 6.240251 | 308 | - | 29218112 | 17.549928 | 6.753813 |
| 244 | 595.6 | $14.26: 84$ | 15.640499 | 6.246800 | 314 | 9048 | 29563628 | 17.678395 | 6.760814 |
| 2.5 | 60425 | 14766125 | 15.852474 | 6.237324 | 310 | 9810 | 29791000 | 17.C04816 | 6.767849 |
|  | 60518 | 1才88, 98E | 15.684347 | B. 265826 | 311 | $96 ; 2$ | 30080' 31 | 17.63519\% | 6.775:6B |
| 247 | 6140. | $150 \mathrm{rig22}$. | 15.716233 | 6.27.4304 | 3.1 | 9734 | 813713 | 17.663521 | 6.782422 |
| $2+6$ | 61513-1 | 152529 n | 15.548015 | 6.282760 | 312 | 9796 | 8086429 | 17.691806 | 6. 789861 |
| 249 | 6.001 | $1543424!$ | 15.779783 | 6.291194 | 31.4 | 98546 | 80959144 | 17.7:00 5 | 6.794884 |
| 2 |  | 1562:000 | L5.81 38: | 6.298104 | 317 | 99226 | 81255S75 | 17.7482c9 | 6.804091 |
| 251 | B3 01 | 1581:25 | 15.842974 | 6.3,7992 | 315 | 9985 | 8155149 | 17.7763f8 | 6.811284 |
| 452 | 63504 | 1600 '0 | 15.87+50\% | 6.318359 | 37 | $100+88$ | 818550 है | 17.804498 | 6818461 |
| , | 64909 | $1614497 i$ |  | $6.32+704$ | 818 | 1111124 | $8215743{ }^{5}$ | 17.832554 | $6.825 ¢ 24$ |
| 2.4 | 64516 | J6357044 | 15.907377 | B. 3833.25 | 318 | 101781 | 824617.9 | 17.860571 | 6. 632771 |
| 25 | 6502 5 | 165\%1.375 | 15.968714 | 6.243:5 | 324 | 112100 | 3\%768100 | 17.568543 | 6.839803 |
| 25 | 6536 | 16777211 | 16 | 6.349602 | 32 | $10.34 \%$ | $3807+161$ | 17.916472 | 6.84:021 |
| 25 | 6604: | 16974;93 | 6.031219 | $68578: 9$ | 32 | 103664 | 83386248 |  | 8.8541:4 |
| 25 | 6564 | 17173512 | 16.062375 | 6386095 | 32.5 | 10432. | 83848567 | 17.972400 | B.¢8,211 |
| 269 | 67081 | 1787d97 | 18.093476 | 0.374810 | 324 | 10497 | $340122 \% 4$ | 18 | 6.868284 |
| $\square B^{6}$ | 8700 | 1757600 | 16124 16 | 6.354514 | 32 : | 1466: | 34328125 | 18.027756 | $6.875 \% 43$ |
| 0 | 681:1 | 17779581 | 18.165494 | B. 390876 | 3.6 | 106:7f | 34645971 | 18.1.55470 | 6.68: 388 |
| 262 | $6804+$ | 1798472 | 16.186414 | 6. 6988.27 | 327 | ] 108929 | 849.6763 |  | $688 ¢ 419$ |
| $2 \cdot$ | 0.5189 | 1610447 | 16.217274 | 6.40.956 | 328 | 107584 | $85 \times 87552$ | 18.110770 | 6. 806435 |
| 26 | 69597 | 16:39974- | 16.24=070 | 6.416068 | 32 | 108241 | 3.6112 ${ }^{\text {¢ }} 9$ | $18.13835{ }^{\text {i }}$ | 6.903436 |
| 26 | 70.22 | 18t036: | 16. 7882 | 6.423157 | 336 | $10 \sim 00$ | 359.7000 | 18.166902 | 6.910473 |
| 266 | 7075 | 1882119 | 18.30950 | 6.431:26 | 331 | 10954] | $8828+6 \leqslant 1$ | 18.19'405 | 6.917386 |
| 267 | 71289 | 1903+165 | 16.36034 | 6.439275 | 38: | 110224 | $3 \mathrm{B59436E}$ | 18.20867 | $6.92+3$ ! 5 |
| 2 trs | 718.4 | 1924*B.s. | 18.370;0 | B.44750 | 33 | 1108 cg | 369260.7 | 18.248:87 | $6.9313 C 0$ |
| 269 | 72.361 | 1946.3109 | 16.40.218 | 6.455314 | 33 | 111566 | 37269704 | $18.275 t^{\prime} 6{ }^{\text {t }}$ | 6.988:32 |
| 274 | $729 \times 0$ | 196300 | 10.431676 | 6.423304 | $33 ;$ | 11. 226 | 3759637 | 18 cosc 0 | . 6.445449 |
| 271 | $134+1$ | 1950.51 | 10.4r207: | 6.471274 | 3.16 | 112898 | 8193365 | 18.3203 2 | 6.95\%453 |
| 272 | 73.384 | 201:364: | 16.49.42 | $6.479 \pm .4$ | $3{ }^{3} 5$ | 113569 | E827275 | 18.377559 | 6.9:6943 |
| 27 | 7452 | $20345+1$; | 16.51271] | B. 487158 | 335 | 114.41 | 386144 ¢ | 16.284776 | 6.966819 |
| : 7 | 7507 | 20.770924 | 16.55:945 | 6.4950t4 | 8\% | 11421 | 26988216 | 18.41195: | 6.972652 |
| 275 | 7562 | 207988 i | $16.68 \% 11 \underbrace{}_{-}$ | $6.6029 \% 6$ | 810 | 115600 | cg3c 400 | 18.433088 | 6.9795C2 |
| 270 | 7617 t. | 2102457 | 16.61824 | 6.610829 | 3. | $116{ }^{5} 81$ | 89651821 | 18.466185 | 6986389 |
| 277 | 7 \% | 2125393: | 16,64.3517 | 6.518384 | 345 | 118964 | 4010168 | 18.49324: | 6.993491 |
| 278 | 77284 | 21484952 | 16.67333: | 6 6: 6179 | 34: | 117649 | $44^{6} 63607$ | 16.5205 | 7. |
| 2712 | $776+1$ | 21717634 | 14.743298 | 6.534 .35 | 344 | 118\%36 | 4 4.70758 | 16.647237 | 7.008788 |
| 280 | 7840 | 2195240 | 16.733**60 | 6.542132 | 344 | 119.2 | 41063025 | 18.674'75 | 7.073579 |
| 241 | 78961 | 23168:141 | 16.763054 | 6.549111 | $34+$ | 119\%16 | $4142173 t$ | 18.6010:5 | 7.020319 |
| 2 B | 74.624 | 2242578 c | 18.79265 | 6.557672 | 31 | 120409 | 41781924 | 1B.62igsf | 7.027166 |
| 283 | 600B4 | 2 205:8: | 18.822 n 03 | 6.565415 | 344 | 121104 | $4: 144192$ | 18.654758 | 7.188850 |
| 281 | 6065 | 22900:0 | +6.65 2.29 | 6.573139 | 34. | 121601 | 4250¢5+9 | 16.681541 | $7 . \therefore 40581$ |
| $2 \times 5$ | 8122 | 2314115 | 16.681945 | 8.59084 4 | 32.4 | 1:2:00 | 42875000 | 18.708286 | 7.047208 |
| 286 | 8178 | 2339365 | 16.9115;34 | 6.688531 | 351 | 123201 | 4324355] | 18.734994 | 7.04003 |
| 28 | 82364 | 2368930: | 16.9410i4 | 6.696202 | 35. | 12350 | 43614.06 | 18.761063 | 7.164686 |
| 285 | 829.4 | 23887872 | 16.9705 t 2 | 6.603854 | 35: | 124609 | 4396\%97 | 18.789299 | 7.067876 |
| 28.4 | $83 \div 21$ | 24137549 | 17. | 6.011488 | 354 | 125316 | 44861464 | 18.61488i | 7.074643 |
| 2.0 | 8416 | 24389000 | $17.029 \times 86$ | 6.61910 | 35 | 12602: | 44738675 | 18.84144: | 7.080698 |
| 291 | 84681 | 24642171 | 17.05672 | 6.620105 | 351 | 128:36 | 45118016 | 18.867962 | T. 187341 |
| 23 | 85264 | 24897018 | $17 . U 8810$ | 6 63428i. | 357 | 124491 | 45499290 | 18.89444: | 7.09597 C |
| 298 | 83649 | 25153757 | 17.117242 | $6.641851^{\circ}$ | 35. | 128164 | 45882712 | 18.92088: | 7.10ı688 |
| 29.4 | 8643 | 254.2184 | $17.146+26$ | 6.849349 | 354 | 128881 | 46:382; | 18.945295 | 7.10719.3 |
| 29 | 8705 | 25612375 | 17.175564 | 6.668930 | $\cdots \mathrm{F}$ | 129600 | 46656000 | 18.973666 | 7.118786 |
| 216 | 87816 | $2693+334$ | 17.204650 | 6. 664443 | 38 | 130. 21 | 47045861 | 19. | 7.121367 |
| 297 | 82204 | 26198176 | 17.233687 | 6.65144 | 862 | 131044 | $47 \cdot 137928$ | 19.023297 | 7.126935 |
| 298 | 6880-4 | 20463592 | $17.282 \sim 76$ | 6.679419 | $96:$ | 131789 | 47837147 | 19.05558 | 7.133492 |
| 299 | $89+17$ | $2573089:$ | $17.2+161$ | B, 68 ${ }^{\text {b }} 82$ | 384 | 1:249 | 48: 28644 | 19.078744 | 7.140137 |
| 300 | 9000 | 27000050 | 17.32008 | 6.691328 | 366 | 133225 | $488 \div 7125$ | 19.104973 | 7.146569 |
| 20 | 90801 | 27270901 | 17.348351 | 6.701758 | 366 | 138956 | 49027890 | 19.13112 t | 7.153490 |


|  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  | 80621568 |  | 25 |
|  | 1354 | 498 | 19. | 7.1 |  |  |  |  |  |
|  | 13616 | ${ }_{5}^{5}$ |  | T, |  |  | 81745501 | 20.83 | 7.671178 |
|  | 13660 | 5055 | 19.2353 | 7.159 |  |  | 8.312575 |  |  |
|  | 137641 | 61084811 | $19.2613^{\text {nit }}$ |  | 43 |  |  |  | 86 |
|  | 138388 |  | 19.287501 | 7.19196 ${ }^{\prime \prime}$ |  |  | 83453453 | 20.8 |  |
| 373 | $\begin{aligned} & 13912 \\ & 13987 \end{aligned}$ | 5189311 62313624 | 19.313247 $19.3390: 4$ | 7.148405 <br> 7.204832 | 43: |  | -84027672 | 20.92 |  |
|  | 14062 | b< 734375 | 19.36 | 7211247 | 43 | 193 |  |  | 138 |
| 376 | 14137 | 681573 | 19.390 | 7.21765 | 4 | ${ }_{19} 948$ | 85766121 |  | 7.611862 |
|  | 11212 | 63581 | 19.4164 | 7.224045 | 4. |  | 8635 | 21.023797 | 7.n17411 |
|  | 14: 68 | 540101 | 19.4482 | 7.230 |  |  | 86938 | 21.047565 |  |
|  | 14.61 | 5 5439 | $19.467{ }^{19}$ | 7. 236 | 414 | 197 |  |  |  |
|  | 1440 | 5187 | 19.4 | 7.24 |  | 198 | 88121 |  | 7. r 34 c 06 |
|  | 1459161 | 5330 6574 | 19.51 | 7.219 | 44 | 148 | 487.0536 | 21. |  |
| $33_{3}$ | 14668 | 55181 | 19.703 | ${ }_{7.2521647}$ |  | $\begin{aligned} & 19580 \\ & 20000 \end{aligned}$ | 893146\%3 | $2{ }^{21}$ | 7.6460.7 |
|  |  | 5662 | 19.5953 | 7.:68 | 44. |  | 9518 | 21.18 | 7.167 .14 |
|  |  | 5706 | 19.62141 | 7. 274 |  |  | 9112560 |  | 7.6i3194 |
|  |  | 571 | 19.64 | 7.281 | 45 |  | - | 21 |  |
|  | 145 | 6796 | T2 | 7.287 | 45 | 2043 | 923454 | 21.26i0 |  |
|  | 15054 | 68.11 | 19.697115 | 7.293 | 45. |  |  |  |  |
|  | $\begin{aligned} & 131321 \\ & 152100 \end{aligned}$ |  | $\mid 19.7230$ | 7.2998 |  |  | 93376664 |  |  |
| 291 | 1.236] | 6977 | $19.773 i$ | 7.31 |  |  |  |  |  |
|  | 15366 | 60236 | 197959 | 7.3186 | 45 | 208 | 95443993 | ${ }_{21} 2$ |  |
| 38 |  |  | $19.82+22$ | $7.3248 \times 9$ | 45 | 28:7e | 9,0719 | 21.41 | . $\mathrm{iDS288}$ |
|  | 156 | 6116 | 19.84943 | 7.3310 | 4: | 2 LOt |  |  |  |
|  |  | 616290 | 19.874 | 7.33 |  |  | 973 |  |  |
|  | 15681 | 6:2991 | 19.899 | 7.343 | 4 i | 21 | ${ }_{97} 9$ | 21.476 |  |
|  | ${ }_{158404}^{15 i 00}$ | ${ }_{6304}^{625}$ | 1992 | 7.3498 | 46 | ${ }_{21344}^{213}$ | ${ }^{9861}$ |  |  |
|  |  | $\begin{aligned} & 6304 \\ & 6352 \end{aligned}$ | $19.04$ | $7.36576 \%$ | 46 | 21436 | 9926 | 21.617 | 7.736167 |
|  | 180000 | 64 CO |  | 7.6 | 466 | 216226 | 160544625 |  |  |
| $4: 1$ | 160501 | 6448120 | 2).024 | 7.3741 |  |  | 10118 | 21 |  |
|  | 18160 | 96480 | 20.0499 | 7.360 .2 | 46' | 21805 | 101847 | 21.610 | . 758402 |
| ${ }_{40} 40$ | 1624 | ${ }_{669515}^{6515}$ | :00 0748 | ${ }^{7}$ 7.3884 | 46 | 21902 | 1.25133:32 |  |  |
|  | 10326 | ${ }^{6593924}$ | 20.09975 | 7.3923 |  |  | 103161 | 1.66 |  |
|  | 164t2 |  | 20.12461 | 7:6986 |  |  | 1138 | 21.6: | 7.774980 |
| 40 | 16.64 | $67+191$ | 20 | 7.4 | ${ }_{4}^{47}$ | ${ }_{22127}^{2218}$ | 10416711 |  |  |
|  |  | 91131 | 2 L .19 | 7.4 | 47 | 22372 | 105823817 | 21. |  |
| 409 | 1672-1 | 684179 | 20 | 7.42 | 47 | 2:4 | 106496424 | 21.7 |  |
| 410 | 18310 | 68922 | 20.248.5 |  |  |  | 107171 |  | 7.802463 |
|  |  | 694285 | 27 | 743 | 47. | 2266 | 10785017 | 21.81 | 7.80 |
|  |  | ${ }^{6} 9893445$ | 20. | 7.4410 | 47 | 2.25 | 108531338 | :1 8.40 |  |
| 414 | 17139 | 7695794 | 20.3246 20.369 | 7.4530 |  |  | 109 |  |  |
| 415 | 172226 | $71433 i 85$ | 2 S 3715 | 7.439 | 48 |  | 111599:000 |  |  |
|  |  | 71991296 | 20.39607 | 7.466 |  |  | 111284641 |  |  |
|  | 1738 | 7291171 | 20.4203 | 7.47 | 48 | 21232 | 11198010 | 21.9 |  |
| 418 | 13472 | 730346. | 2.4450 | 7.476968 |  |  | 112678 | 1.9 | 7.84601a |
|  |  | 7351005 | 20.4694 | 7.482924 |  |  | 113379904 |  | 7.85 |
| 40 | 17 | T4085001 | 20.4939 | 7.488372 | 48 | 235\%2 | $11448+125$ |  |  |
| 421 | 177 | 74618461 | 20 | 7.494 | 48 |  | 11:791256 | 2.04 | 7. 866244 |
|  |  | ${ }_{7568} 75$ | 20 | 7. | 48 | 231164 | 11550 | 22.0 | 7.867618 |
| 424 | 189:7 |  |  |  |  |  |  |  |  |
|  |  | 7.76 | 20.6155 |  |  |  | 11764000 |  |  |
| 428 | 181476 | 7730877 | 2 630 | 7.52 | 49 | 24103 | 118370:71 | 22. |  |
| 427 | 188329 | 77854483 |  | dso | 402 | $21: 06$ | 11.09 | 22.18 | 7. |
|  |  | ${ }^{7880}$ | 20.68816 | 7.535121 | 43 |  | 119623157 |  |  |
| 42 |  |  | 20.712334 |  | 49 |  |  |  |  |
| 4. | 18990 |  |  | 7.647841 |  | 24512 |  | 22.218:15. | . |
|  | 18 | 8006.491 | 20.780539 |  |  |  |  |  | 7915884 |


|  |  |  |  |  |  |  |  | Sq. Root. |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 24 | 12 |  |  |  |  | 8 |  | 82.32371 |
|  | 2480 | 12500 | 22.31 | 7.92 | 66 | 316 | 178463547 | 13.52 |  |
|  | 2190 | 1-425 | 2.8348 |  | 66 |  | 17440314 |  |  |
|  | 2:0 |  |  |  | ${ }_{66}$ |  | 181362 |  |  |
|  | 21 | 12575 | $2.3 \% 3$ | 7.9 | 660 | 3203 | 18132 | 3.7 |  |
| 602 | $2 \cdot 2$ | 126\% | 22.40.335 |  |  |  | 18:284 |  |  |
|  |  | 127:6352] | 2.42;601 |  | 60 | $32282+$ | 1832 204 | :3. 82 | 8.281635 |
|  | 230 | 123124034 | 22.449 | 7.9:8 | 66 | 3237... | 1843200 | 2385 | 8.286193 |
|  |  | 128787 |  |  |  | 32 | 385193 |  |  |
| 60 |  | i29354216 |  |  | 57 |  | ${ }^{18} 816$ |  |  |
|  | 2370 | $130233+3$ | :2.61615 | 7.97 | 57. | 327214 | 187148 | ${ }^{3} .81$ | 8.30 |
|  | 2530 | 131093512 | 2.68 | 7.9 |  |  | 186332517 |  |  |
|  |  | 131672429 | 2.6610 | 7.98 | 67 | 3244 | 189139224 | 3.95 | 8.31 |
|  | 2801 | 132351030 | 2.633179 | 7.98 | $\checkmark 75$ | 3 | 190109375 | 3, | 8.315517 |
|  |  | 1,31323.31 | 2 |  |  | 3317 | 39114276 |  |  |
|  |  | 134217128 | 22.8 |  | 57 | 833 | 19:100433 | 4.0 | 8.3251 21 |
|  | $26 ; 1$ | ${ }^{133} 30756$ | 2:.6195 | 8.00 | 57 | ${ }^{834}$ | 19.10.652 | 4.0 | 8329954 |
|  |  | 135706 | 22.6;15 | 8.01 |  | 9:0 | 184104 | 24.0 | 8.334756 |
| 615 | 25,2 | 13653 | 23.6 | 8.01 | 68 | 3364 | 18311 | 4.08 | 8.339561 |
|  | $23: 2$ | 13733 | 2.7156 | 800 |  | 3315 | 19812 | 4.303 | 8.344331 |
|  | 23723 | 1 181 56113 | 22.737 | 8.02 |  |  | 19713 | 4.1 |  |
| 618 | 2683 | 13 | 42.7 | 8.03 | 68 | 8 89 | 19816 | 4.14 | 8.363904 |
|  | 2633 | 113799 | 13. 881 | 8.03 |  | 3110 | 199176 | 4.16 |  |
|  |  | 140318100 |  |  |  | 342 | :020 | \%. | 46 |
| 621 | 271411 | $1{ }^{1} 123761$ | 22.83 | 8.0 | 68 : | 843 | 20123 | 4.2 | 8.368209 |
|  | 27.433 | 24, 23364 | ;2.847 | 8.05 | 634 | 3445 | 20226 | 12 |  |
| 62 |  |  | . 831 | 8.05 |  |  | 20329 | 4.24 | 8.377713 |
| 6 | 2745: | 113377821 | 2.8310 | 8.06 | 18. | 34692 | 20133 | 4.26 | 8.382463 |
|  |  | 1147031 | 24.012 | 8.067 | ${ }^{69}$ | 3181 | 20535 | 4.28 |  |
| 62 |  | $14153157{ }^{\text {d }}$ | ${ }^{3} 5.0316$ | 8.05 | 69 | 340 | 20442 | 4.31 |  |
| 62 |  | 1433;3183 | 22.65 | 8.07 | 69 | 3.04 | 21747 | 4.3 |  |
|  | 27338 | 117197352 | 1.8 | 8. 083 |  | 3510 | $2085 \%$ | 4.361 | 8.401338 |
| 52 |  | 14803,839 |  | 8.0875 |  | $8{ }^{83} 2$ | 209.81 | +.3i |  |
|  |  | 34387700) | 23. 02 | 80 | 69 | 354 | 2106 |  | 8.414832 |
|  |  | 14773231 | 23.013 23 | 8.097 | 69 | ${ }^{355}$ | 211.087 | 4.4 |  |
|  |  |  |  | 8.1028 |  | 356+ | 21:77¢173 |  |  |
| 63 |  | 15141) 43 ? | :3. | 8.107 | 69 | 3jí6 | 2138471 | 4 | 8.424944 |
|  | 2351 | 15:273304 | :3.1074t | 8.11:2 |  | 3588 | 2:492 | 4.4 |  |
| 685 |  | 156110375 | 23.13003 | 8.1180 |  | 380 | 21600 | 4.494 |  |
| 630 | , | 153939836 | 23.15167 | 8.123 | 611 | 3612 | 21703 | 4.61 | 8.439049 |
|  | 213.35 | 166354153 | 23.17326 | 8.1281 |  | 362 | 218377 \% | 4.636 |  |
| 63 |  | $16.5723: 72$ | -3.19182 | 8.1331 |  | 363 | 2925 | 41.66 |  |
| 63 |  | $156,10031{ }^{\text {d }}$ | 13.21 | 8.139: |  | 3648 | 2213 | 31.5 | 8.453047 |
| 614 | 2910 | $\underline{151434} 100$ | 23.2379 | 8.132 |  | $3 \cdot 160$ | 22214461 | 4.69 |  |
|  | 2, 23 | $158310+42$ | 23.2591 | 8, 1483 |  | 367: | 222145 | +.617 | 8.462347 |
| 64. | 23376 | 159:20333 | 23. | 8.153! |  |  | 22384 | 14. | 8466899 |
| 543 | A) | 160103007 | 43.3023 | 8.168 B |  |  | 2217557 | 4.657 | 8.4 .1617 |
| 644 |  |  | 13.313 | 8. 1633 | co | 3708 | 2258665 |  | 8.476299 |
| 615 |  | 16137852; | 23 345:3 | 8.16 | 61 | 8:214 | 2269511 | 21.68 | 8.450926 |
|  | 2911 | 118371 | 3.3164 | 8.173 |  | 373 | 228099 | 21.71 |  |
| 617 |  | 183 , 1 | 43.38363 | 8.178 | 61. | 3715 | 2:922 |  |  |
|  |  | 164; 6 | 3.4,9 |  |  | 3757 | 230 | 21.75 |  |
| 649 550 |  | 1653 | 33.4307 | 818 |  |  | 231475 | 3.79 |  |
| 550 |  | 10d3T:000 | 3.4 | 8.18 | 01 | 3782 | 232818 | +.799 |  |
| 651 | 80.3 | 16724415 | 23.4733 | 819 |  |  | 233744 | 21.81 |  |
| ${ }_{6} 6 \overline{2}$ | 30 | 168196638 | 23.4946 | 82 |  |  | 2388851 | :+. 88 | 3 |
| 653 | 30, | 169112377 | 3.5160 | 8. 2030 | 618 | 381 | 2360:90 | 4.85 |  |
|  |  | 17003146 | :3.63 |  |  |  |  | 2.878 | B. 522132 |
| 65 |  |  | 23.6591 | 8.21 |  |  | 23:32 | 4.69 |  |
| 55 | 303136 |  | 21.67 | 8.222 |  | 385 | 2394830 |  |  |
|  | 300243 |  | 23.6009 | 8.2:78 | 62 | 88156 | $2406+18$ |  | 8, 536177 |
|  |  |  | . 6 | 8.23 |  | 88 | 24180 | 4.95 |  |
|  | 12248 |  | 3 | 8. 23 | 62 |  | 2429 | 4.6 |  |
|  |  |  | 13 | 8.2 | 62 |  |  |  |  |
|  | 81472 |  | 23.6864 | 8. 24 |  |  |  |  | 8.654437 |


|  |  |  |  |  |  |  | Cube. | Sq. Root. | Co. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 6 |  | 246491883 |  |  |  |  | 33 |  |  |
| 62 | ${ }^{3993}$ | 247653152 | 25.05 | 8.66 | 64: | 486 |  | 25.321893 | 8.849344 |
|  | ${ }^{39564}$ | 2488:8189 | 2 i .01 | 8.66 | 694 | $4816^{\prime \prime}$ | $3422550 \times 4$ | 25.343979 |  |
|  |  | $25^{21070} 0$ | :6.190.8 0 | 8.672118 | 695 | 483621 | 33,702;6 |  |  |
| 631 | $3{ }^{3} 8181$ | ${ }^{201239591}$ | 25.11971: | 8.6 ¢if15 | 69 | 48441 ' |  |  |  |
|  | ${ }^{399424}$ | ${ }^{25253} 9$ | 25.132611 | 8.581689 | 69 | 485:9 | 338.98873 | -6.400-57 |  |
|  | 460169 40195 | ${ }_{26493}^{25316}$ | 25.16 | 8.58 | ¢9 | 487204 | 340088.98 .2 | $2{ }^{\text {a }}$ |  |
| 635 |  | $\underset{2+0+7875}{26}$ | 5.19920 | 8.5. 8. | 700 | $\begin{aligned} & 45861 \\ & 4990 \end{aligned}$ | 84153:093 |  | 8.874 409 |
|  | 40419 |  | 25.21004 | 8.6997 | T1 | 49140 | 3444'2101 | 6.47649+ |  |
| 657 | 40570 | 268474853 | 5.2368t | 8.60 |  |  | 845 |  | 8 887488 |
| 638 | 40 | ${ }^{25969}$ | 3, 2i8 | 8.e0 | 7:3 | 49+20 | 347428927 | 23.614147 |  |
|  |  | ${ }_{268917119}^{26919}$ | 25.27844 | ${ }_{8}^{8.6132}$ | 70 |  | 843913664 | , | 8.895420 |
| 670 | ${ }^{4096}$ | $26214400^{\circ}$ | 155.28822 | ${ }_{8}^{8.617}$ |  | 4970 | 350402 | 6.551 | 8.9601:0 |
| $\begin{aligned} & 641 \\ & 64 \end{aligned}$ | ${ }_{412}^{410} 4$ | 2633747 | 25817977 | 8.622 | 70 | 4984 | 351392918 | -6.57 |  |
|  | 41344 | 26.8 | 25.3 | ${ }_{8}^{8.63118}$ |  |  |  |  |  |
| 644 | 41473 | 2 T 7089 | 5.37715 | 8.63 |  |  | 3 m | :8. | 8. |
| 64 | 41 | 2633 | 25.398 | 8.640152 | 71 |  | ${ }_{5}^{2561}$ |  |  |
| 646 | 4170 | 269586136 | 25.416631 | 864458 , | 71 |  | :5942,431 | ${ }^{16} 6$ | 8.9-1.21 |
| 647 |  | 279840023 | 25.436 |  |  |  | 3609.44128 |  |  |
|  |  | 27209 | 25.455 | 8.6534 | $\mathrm{i}_{13}$ | E07369 |  | 25. | 8 933 ${ }^{\text {c }}$ |
|  |  | ${ }_{2}$ | 25 47547) | 8.65 | $\mathrm{TH}_{71}$ |  | 363 | 2 i .7 | 8.937813 |
| 65 | 42386 | 27 | ( $\begin{gathered}5.493 \\ 25.614\end{gathered}$ | 8.6.6 | 718 | ${ }_{61}^{6152}$ | -66 |  |  |
|  |  | 271167803 | 25.654:9 | 8.871 | 7 |  | -688 | 6.7 |  |
|  |  | ${ }_{28}^{27845977}$ | 23.6 |  |  | 515 | 37.146 | 28.78 |  |
|  |  |  | 25.5 | 8.830 | i1 |  |  | 26.81 |  |
|  |  | ${ }^{281011375}$ | 25.59296 | 8.6845 | 7 | 6184 | -73948000 |  |  |
| 657 | 43 |  | ${ }_{25}^{25.612}$ |  | ${ }_{72}$ | ${ }^{6198}$ | ${ }^{3} 7480$ | ${ }_{8}^{28.85}$ | ${ }^{8.964993}$ |
|  |  | 294980312 | $25.65{ }^{516}$ | 8.197784 |  |  | 37 | ${ }_{26.88}^{8.88}$ |  |
|  | 4342 | 288191170 | 20.6769,5 | 8 1021 8 |  |  | 379503424 | 16.917 | 8.9: 6376 |
|  |  |  | 5.690 | 8.796587 | 72 | 62 | 3310 | 2i.92, |  |
|  | 4382 | 29 | 25. 7 | 8.71093 8.7153 |  | 5 625 | 382 |  |  |
| 683 |  | 29 | $25.7+8$ | 8.718 | :2 | 62988 | 88 |  |  |
|  |  | 292754914 | -5.76819 | 8.724141 | 77 | $6314+$ | $387+21459$ |  |  |
|  | 44 | 2910:9625 | 23.78753 | 8.72351 | + | 63290 | 38901700 , | 27.018518 | 9.60113 |
|  |  | $\begin{aligned} & 295 \\ & 2965 \end{aligned}$ | 2i.800 | ${ }_{8}^{8.7328}$ | ${ }_{73}^{731}$ | 583: | ${ }^{390877891}$ |  |  |
|  | 44622 | ${ }_{298977632}^{29814}$ | 25.84: | ${ }_{8}^{8.741}$ |  |  |  |  |  |
| ${ }^{6}$ |  | 2994183198 | 5.86 | 8.745 |  | 63875 | 30544ter 4 |  |  |
|  |  | 3007e | 5.89435 | 8.751340 | T3: |  | 397065;75 | 27.1 | 9.0246\%3 |
|  | 450:4 | 302111711 |  | 8.764 | ${ }^{3}$ | 64169 |  | 27.129 | 0.027714 |
|  |  | 303184448 | 25.922 | 8.75 | 737 | 64316! | 4003155 | 7.14 |  |
|  |  | ${ }^{304821217}$ | 25.94224 | 8.763 | ${ }^{73 \times}$ | ${ }^{6414} 4$ | 4019472 | 27.16 |  |
| 87 |  | -075 | ${ }_{25.8807}^{25}$ | 8.71 |  |  | $\left\lvert\, \begin{aligned} & 400 \\ & 405 \end{aligned}\right.$ | 27 | 9.040985 |
|  |  | 3089 |  | $8.7763 \mathrm{~F}_{2}$ | 7 | 61908 | 40 C 663121 | 27.22.3 |  |
|  |  | ${ }^{310288733}$ | 6.0192 | 8.780708 | 7 | ${ }^{65058}$ | 408584 | -7.23 | $0.0531 \cdot 3$ |
|  |  | 3115 b 81304 | -8.0 | 8.78 |  | ${ }_{6}^{6}$ | 411182 | 27.2 | 9.057:48 |
|  | 46 | ${ }_{31} 1432 \mathrm{SDO}$ |  |  | ${ }_{74}$ |  |  |  |  |
| ${ }^{681}$ | 48 | 316821:41 | 26.0359 | 8.7979 | - | 655 | 4151 cog |  |  |
|  |  | $3 i 7$ | 23.11512 | 8.8022 | 74 | 668 9! | 4168; $21 / 3$ | ${ }_{2}: 331300$ | - ${ }^{0} 0.9342$ |
|  |  | 818611987 | c6.134" | 8.80 | 74 | 659.0 | 418:50 | 17.349 | ${ }^{0.077019}$ |
| ${ }_{685}^{684}$ | 467 | 3200125.14 | 2. 15 |  |  |  | 420189749 |  | 9.081:63 |
|  |  | 12 | 28.17 | 8.81 | 5 |  |  |  |  |
| 687 | 47196 | 3242427013 | 26.21 |  | 75 |  | 4335 | 27.40 |  |
|  |  |  | 28.22375 | 8.8288 |  |  | 42 ¢9\%7i77 | 274 |  |
|  |  | 32\%082769 | ${ }^{26.24}$ | 8.832285 | 76 | 68851 | 423fin ${ }^{\text {¢ }} 4$ | 27.45 | 0.101728 |
| 89 |  |  | , |  | 765 | 6\% | 4:0368875 |  | 9.10 .742 |
|  | 4743 | 82993 | 28.28 | 8.840 |  |  |  |  |  |


|  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
|  |  |  |  | H | 82 |  |  |  |  |
| 0 |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  | 83 |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  | 8 |  |  |  |  |
|  |  | $4618 \times 9917$ |  |  | 8 |  |  |  |  |
|  |  | 483684824 |  |  | 8 |  |  |  |  |
|  | 6008 |  |  |  |  |  |  | $\because 8.9827$ |  |
|  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  | 8 |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
|  | 6115 |  | 7.964 362 |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
|  |  | 48558 |  |  |  |  |  |  |  |
|  |  | 4874 |  |  |  |  |  |  |  |
|  | - |  |  |  |  |  |  |  |  |
|  |  | 491 |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
|  | 6 26681 |  |  | 9. |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
|  |  |  | 28 | 9.255022 |  |  |  |  |  |
|  |  |  |  | 8.2 .991 |  |  | 633839779 |  |  |
|  |  |  |  |  |  |  |  |  |  |
|  |  | 50 |  | 9. |  | 14132 |  |  |  |
|  |  |  |  |  |  |  |  |  | 9.517051 |
|  |  | 60816969 |  |  |  |  |  |  |  |
|  | 638401 | $51{ }^{5188239}$ |  | 9.279,08 |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
|  | 641601 |  |  | 9.2 |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
|  | 644 | $5177816 \frac{17}{}$ | 28 | 9. |  |  |  |  |  |
|  | 64 | 519718464 |  | 9. |  |  |  | -29 |  |
|  |  | 521860126 |  |  |  |  |  |  |  |
|  |  | 5 | 28.390139 | 9. |  |  |  |  |  |
|  |  |  |  |  |  |  | ¢31'54848 | $19529 \sim 4$ | 12 |
|  | 652884 | 5.7614112 |  | 9. |  |  |  | 29 |  |
|  | 854481 | 62 |  | 9 |  | - | 6576:270 |  | 9661010 |
| 810 |  |  | 23.460498 |  |  |  |  |  |  |
|  |  | 53341 | 23.438061 | 9. |  |  |  |  |  |
| 812 |  | 633387328 |  |  |  |  |  |  | 9.651937 |
|  |  | 53736678 | 2 | 9. |  | 77 | 15 |  |  |
| 814 | 862 | 68 | 28.630085 | - |  | 728 | 679151439 |  | 9.579:08 |
| 815 | 6042 | $6+1343$ |  |  |  | 77440 | 881472000 |  | 9.582839 |
|  | 685956 | 6433388498 | 28 | 9.34467 | ¢ | $7761 n$ |  |  |  |
|  | 667489 | 5 |  | 9.348473 | 88 | 77792 |  |  | 9590093 |
| 818 | 689124 | $5473+3432$ | $28.60 \cdot 699$ | 9.352285 | 88 | 77 | 688465387 |  |  |
|  | 60761 | 649353259 |  | 9. 356095 | 88 | 751456 | $8908071{ }^{11} 4$ | 29.73.13 |  |
| 820 | 672400 | 651 | 28 | 9.369 | 88 | 78322: | 393154125 |  | 9.70 .1924 |
| 2 | 674041 | 653387 | 309 | 9.363 | 88 | 7849 | 685506 | . 765 | O. 6 |


| No. | Square | Cube. | Sq. Root, | Cu. Root. | No. | Square. | Cube. | [Sq. Root. | Cu. Root. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 887 | 78676? | 697864193 | .9.752645 | 9.608181 | 914 | $8 \pm 1134$ | $841: 33 \backslash 4$ | 20.724543 | 980.1736 |
| 888 | $7885+$ | 700227072 | 49.79932. | 9.611791 | 015 | 8930.6 | $84390 \cdot 6: 5$ | 9.74182 | 9.813148 |
| 88 c | 790:2 | 702545369 | 29.81610 | 9.6163 .7 | 194 | $89+911$ | 846590.36 | 31. 757113 | 9.818 F 50 |
| 890 | 752196 | $7.496999)$ | $49+3: 8 \mathrm{~h} 7$ | 9.619011 | 94 | 84180 | 849:278:23 | :0 7: ${ }^{\text {7 }}$ | 9820117 |
| $89^{\prime}$ | 79.388. | 70:347971 | 29.849623 | 9.62**303 | 945 | 8.8711 .4 | 851971852 | 10.78961,* | 9.823572 |
| 892 | 79566 | 79732288 | $2 J .866369$ | 9.c26:01 | 944 | 90Jt'91 | $8 \pm 46703+9$ | [30.81 584: | 9.827025 |
| 896 | 79744 ! | 71221957 | 29.883111 | 9.649:97 | 9 Sa | 902509 | 857.1760, | 3'2.8.5076 | 9.880.75 |
| 891 | 79923! | 714516984 | 29.899832 | 9.6338! 0 | 9.11 | $901411]$ | 860885351 | $0.838 \% 8$ | 9.833423 |
| 89 ${ }^{\text {c }}$ | 8010 | 718117376 | 29.9166 ${ }^{\text {B }}$ | $9.63+5881$ | 92 | 90330 . | 864801403 | $\therefore 0.85449$ | 9.887389 |
| 894 | 80281 t | 718.51315 | 29.9331259 | 9.64089 | $95:$ | 9818209 | 865523177 | 30.87669n | ${ }^{9} 840812$ |
| 897 | 80460: | $7217312 \mathrm{~T}, 3$ | 29.9499.is | 9.644154 | 94 | $9101 / 1$ | 868.2 06.4 | 34.88.89t | 9.8.14253 |
| 8.) | 80640 H | 721150782 | :9.40464 | $9.6477 \pm 6$ | 45 | 91202 | 876983875 | 90.80 974 | 9847092 |
| 899 | 89810 | $7265{ }^{\text {2 }} 2699$ | 29.983326 | 9.657316 | 95 | 918984 | 87372.818 | 20 919.4:. | 9.851128 |
| 900 | 810005 | 7.960000 | 0. | 9.654893 | 95 | 91549 | 87647491 | 30.93 416 | 9.864661 |
| 901 | 8118 H | 731432701 | 30,018862 | 9.fi. 84,8 | 95 | 91776 | 859217912 | $34.95 \quad 57$ | 9.8:17992 |
| 90:- | 81364 4 | 7358:0814 | 30.03 .1314 | 9.66017 | 959 | 91918 | 8.19740.9 | $30.9678:{ }^{\text {P }}$ | 9.861421 |
| $99 \%$ | 81510 | 738>14827 | 10.049965 | 9.65560 | 96 | 92:6u0 | 8847340 0 0 | 30.98'8 ${ }^{\circ}$ | 98 cc 8.18 |
| 904 | 81721 ! | 738163164 | 19.0.659 | 9.649176 | 9¢] | $92: 352$ | 8875r3681 | :1. | 9.868 72 |
| 905 | 819.25 | $7+1217 \mathrm{is}_{6} 6$ | 10 08321: | $9.67 \pm 740$ | 91.2 | 92544 | A90.77!28 | ©1.016124 | 9.871694 |
| 904 | $82083!$ | 743677418 | 10.049E33 | 9.776301 | 8. | 92736! | 893056847 | 31.03.241 | 9875113 |
| gnit | $8{ }^{12} 464$ ! | 7461426 Is | 301164.4 | 9.779810 | 96 | 92939 | $895.41: 44$ | 31.048 姣 51 | 9.878:30 |
| gos | 82446 | 748613312 | 0.1330 .8 | 9.683416 | $16:$ | 9\%129: | 808612125 | 3 LC 0440 | 9.881945 |
| 919 | $82[25]$ | 751989429 | $30.1+926$ | 9.786970 | 9 O | 9'316. | C01428t' 8 | 31.081540 | 9.485357 |
| 911 | 8281) | 753571000 | $30.1620 r$ | $9.690 ¢ 21$ | 9ri | $93518!$ | 201:31063 | $31.96662^{\circ}$ | 9.868767 |
| 911 | 82992 | 7.6058021 | 10.182:76 | 9.544919 | $96{ }^{5}$ | 93762 | 907038:32 | $1.11 .65^{\circ}$ | 9.882174 |
| 91 | 831744 | 7385505:8 | 30.19937 | 9.697615 | 96 | 938961 | 90985: 209 | $31.128 \div 64$ | 9895580 |
| 91. | 8336 | 7 71048497 | 30.216+89 | 9.701155 | 9.0 | 9 1u914 | 91267300 | 31.14482 | 9. 598988 |
| 914 | 8339 | 763551944 | $10.2324 \times 2$ | 9.7045.95 | 97. | 84.841 | 915498 f11 | $31.160 \cdot 74$ | 9.902883 |
| 915 | 837225 | 76080075 | 30.24896t | $9.70 \cdot 2815$ | 97: | $9+4784$ | 9183 [1048 | $31.1: 8314$ | 9 005:81 |
| 914 | 839051 | 7585596 | 30.2'6191 | 9.71177! | 9\% | 94674 | $9214 \% 17$ | $31 \quad 19.447$ | 9.908177 |
| 917 | 84:88¢ | 771095213 | 30.2820 .7 | $9.715 \pm 05$ | 914 | 9488.6 | $92+104: 4$ | 11.0847. | 9.81 .571 |
| $91 \%$ | 84272 | 773520636 | -0.292514 | 9.7 8835 | 17 | 96062: | 926859375 | 31.2491 | 9.915962 |
| 919 | $81+66$ | $77 \mathrm{h151669}$ | 30.314 | 9.72:363 | $97 t$ | 962571 | 929714176 | 1.240:48 | 9. 5.19851 |
| 920 | 84644 | 778688001 | [30.3 3151 | 9.72.888 | $97 \%$ | 964:2\% | 9325748®3 | 31.254999 | 9.922738 |
| 9.1 | 818.4 | 78129961 | -38.347981 | 9.72941 | 975 | 956 br 4 | $43.5411^{1} 2$ | [31 27:99] | 9.9261. 2 |
| 922 | 851) 81 | 78.77i448 | 30.3644~2 | 9.73290 | $9: 5$ | 95844 | 938313739 | ,31.288.7\% | 0.129504 |
| 92 | 8519.1 | 78680487 | 30.38041: | $9.7364+8$ | 01 | 96140 | 9+119:040 | $\because 1.3149:^{\prime}$ | 0.9:2883 |
| O:- | 153\% 6 | \%888890:4 | $30.39: 3-1$ | 9.734963 | 9. | 962 :6 | 944066141 | 31.3091 | 9.93261 |
| 925. | 85564 | $79: 453123$ | 0.413:1: | $9.743+5$ | 68 | 94432 | $9169641+8$ | $318 \mathrm{r} 5^{\prime}$ | 9.929638 |
| 924 | 857476 | $79402 \cdot 2 ; 76$ | 3). 4024 | 0.746985 | $9+3$ | 9662* | 94988 0と7 | $31.352-21$ | 9.943109 |
| 9 | 859324. | 79: 647983 | 0.44t.674 | 9750493 | 0 9 | 98.51 | 95 56390t | 31.368774 | 0.945379 |
| 9.8 | 8f118 | 799178752 | $10.4 \times 309$ | 0753945 | 9. | 9702\% | 9558-162; | 1.3847 (6) | 9.049747 |
| 929 | Ffriot | $807765^{\circ} 9$ | 30.47950 | 9.767:00 | 986. | $97214 ¢$ | $985 \times 5 \% 6$ | 31.400631 | 9.95313 |
| 930 | 88449 | $\$ 01357000$ | $9.4959 \cdot 1$ | 9.761019 | 987 | 974169 | 901104803 | 31.416 6t | 9.9:8.7' |
| 937 | 86676 | $8 \cdot 49 \mathrm{t}+491$ | 30.6:2 92 | 9.76 .4497 | 48- | 976144 | 9644202:2 | 31.4724 t. ${ }^{\text {a }}$ | 0.969839 |
| $93 \%$ | 8 rint2. | 801551568 | 30.528675 | 9.76729 | 9.9 | 978121 | 9ri361f69' | :1.4483:0 | 9.9831 8 |
| 93' | 87048. | 812160237 | $30.54504 \%$ | 9771484 | 99 | $9 \times 0104$ | 970.99100 | [31 464 48 | 9.966554 |
| 981 | 83245 | 814:80504 | 30.56141: | 9774974 | 991 | $980^{61}$ | $9732+2.71$ | $3148015 ¢$ | 9.98956 .9 |
| $9 \% 5$ | 8742 | $817409375$ | 39.677789 | 9.778481 | 99. | $98+06$ | -761914~8 | $31.4969: 1$ | 9.97 .262 |
| 93. | 870096 | 82092 \% 58 | $3 \cdot .59417$ | $07829+4$ | 99 | 98504! | $9 \cdot 914065$ | [31.51.902 | 9.976412 |
| 931 | 877901 | +2 166695 | 0.61945 | 9.785. 28 | 994 | $98<0$ il | 982107784 | 31.627 Tes | 0.979959 |
| 936 | 874814 | 825293672 | 30.86785 | 9.758909 | 9 B | 99092! | 985074876 | \|.1.6436: | $9.983 \pm 04$ |
| 939 | 8817 , | $82793019$ | -0.E43106 | 4.79 .38 b | 99 | 9901. | $9 \times 3047938$ | 31.55948i | 9.986648 |
| 941 | 88360' | $83058400^{\prime}$ ) | ,0,859414 | 9.7956 l 1 | 597 | y, | $991028978$ | 31.:75-98 | 9 9899\%0 |
| 941 | $85548$ | 83324762; | $30.07572$ | 9.799333 | 998. | 9960159 | $99 \pm 011092$ | 31.59113 | $9.993328$ |
| 942 | 887314 | 835898888 | .0.692018 | 9.802813 | 999 | $10^{\circ} 911$ | 997.92989 | 31.8rc961 | 9.996665 |
| $9+3$ | $8802 \mathrm{~J}:$ | 838581807 | $\|30.708 .05\|$ | 9.80 .271 | 1100 | 10600.0) | 1 1000000000 | $\mid 31.824778$ | 10: |

## THE SOIL.

The soil is made up of decomposed rocks and decayed or decaying organic matter. The proportion of orgavic matter is small-not averaging in fertile soils more than five per cent. All of the rest of the soil is of a mineral origin, and has at some period formed a part of the rocky crust of the earth.
By the action of air, and heat, and frost, and the friction of running and falling water, and the movement of rocks and stones in moving water, these substances have been sufficiently pulverized to form the foundation material of our present soil.

During uncounted ages these processes have been going on, and they are still active; and, in addition to these, the chemical changes which result from the exposure of pulverized mineral matter to the action of air and moisture, and the successive growth and decay of plants, have operated, and are still operating, to ripen the soil to our uses.
In the early ages, when perhaps the composition of the atmosphere was different from what it is now (and when the soil was surely very different), only plauts of a low order, such as are now extinct, could grow at all. These absorbed certain matters from the atmosphere, and, on their decay, gave them to the soil,--thus helping to fit it for the growth
of a higher order of plants, which were in time succeeded by others, and those by others, until, finally, the changes effected in the soil by the action of the chemical forces, and by the deposit of vegetable matter, have enabled it to produce the vegetation required for the uses of man.

Classification of soils.
Some soils were formed mainly of the rocks on which they now lie-as those of the granite region of New Englandand these take their names from these rocks, as granitic soil, limestone soil, sandstone soil, \&c.

Others have been formed by the deposit, by means of great floods, or the gradual silting of rivers. The latter of these (as the flat lands of the Mississippi Valley) are called alluvial soils; and the former (comprising those soils of varied composition in which occur clay, gravel, boulders, \&c.) are called diluvial soils.

Another classification, which is much more definite, is the following :-

1. Pure Clay consists of about 60 per cent. of silica and 40 per cent. of alumina and oxide of iron, usually chemically combined.
2. Strongest Clay Sorl consists of pure clay, mixed with 5 to 15 per cent. of silicious sand.
3. Clay Loam consists of pure clay, mixed with 15 to 30 per cent. of fine sand.
4. Loamy Sorl deposits from 30 to 60 per cent. of sand.
5. Sandy Loam deposits from 60 to 90 per cent. of sand. 6. Sandy Som contains no more than 10 per cent. of pure clay.

To analyze the above soils with a view to classifying them.
Rule.-Weigh a portion of the soil and spread it thinly on writing paper, and dry it for an hour or two in an oven, the heat of which is not great enough to discolor the paper -the loss of weight is the quantity of water it contained.

Weigh and then boil another equal portion, and when thoroughly incorporated with the water, pour it into a vessel, and allow the sandy parts to deposit until the fine clay is also beginning to settle; then pour off the water, collect the sand, dry as before, and again weigh, which will give the per cent. of sand it contained.

The above classification and analysis of soils have reference only to the water, clay, and sand which they contain, while lime is also an important constituent, of which they are rarely entirely destitute. This gives rise to a further classification.
7. Marly Soil is one in which the proportion of lime is more than 5 , and not over 20 per cent. of the whole. weight.
8. Calcareous Soll, in which the lime exceeds 20 per cent.

To analyze marly and calcareous soils, with a view to their classification as above.

Rule.-Mix 100 grains of the dry soil with half a pint
of water, and add half a wine-glassful of muriatic acid; stir it thoroughly during the day, and let it stand and settle over night. Pour off the clear liquid in the morning, and again fill the vessel with water and stir thoroughly, and when clear again pour it off; dry the soil and weigh it. The loss is the quantity of lime the soil contained. If it exceeds 5 grs., class as a marly soil ; if more than 20 grs., class as a calcareous soil.
9. Vegetable Moulds, which are of various kinds, containing from 15 to 60 or 70 per cent. of organic matter.

To analyze vegetable moulds, with a view to their classifcation as above.

Rule.-Dry the soil well in an oven, and weigh it; then heat it to a dull redness, over a lamp or bright fire, until the combustible matter is burned away and evaporated. Again weigh it, and the loss is the quantity of organic matter it contained.

Besides the foregoing ingredients, every soil must contain more or less of all the elements which enter into the composition of vegetation. They must hold, in a form adapted to its growth and support, silex, alumina, carbonate of lime, sulphate of lime, potash, soda, magnesia, sulphur, phosphorus, oxide of iron, manganese, chlorine, and, probably, iodine. They are called the "inorganic or earthy parts of soil," and constitute from one-half of one per cent. to over ten per cent. of all vegetables. Their analysis is too diffi-
cult and complicated to be attempted by any but a practical agricultural chemist.

The value of soil analysis, even when made by the most careful and skilful chemists, is practically very little. The quantity of matter which is capable of affording food to plants is so very small, in proportion to the whole bulk of the soil, even in those of the most fertile character, that it is questionable whether a sample to be analyzed could be so carefully prepared as to represent the average character of the whole field. Then, again, if we were to procure a correct analysis of a very fertile soil, and then were to crop it for a series of years without manure until it refused to produce paying crops, and were to have it analyzed again, it is not likely that the chemist would detect any change in its composition. In like manner, if we were to add to it 500 lbs. to the acre of bone dust,-enough to make it produce abundantly,-analysis would fail to detect the small quantity of phosphate of lime that we had added in the bones.

Another argument against the value of the analysis of the soil, and a very strong one, is found in the fact that the fertility of the soil depends less on the quantity of plant food that it contains than on its condition. The roots of plants cannot feed on the inside of a pebble; they can only apply their pumps to its surface and take in so much of what is there exposed as can be dissolved in the moisture which goes to form their sap. Neither can roots travel about in the soil; they grow into certain places, and there they remain.

If an inch away from them there is a mass of rich food, they cannot make use of it-sare by sending out new shoots to embrace it-but must remain content with the poorer tract in which they lie. Consequently, the uniform distribution. of the plant food, its solubility, and its exposure on the surfaces of the particles of the soil are quite as important as its quantity.

Chemical analysis teaches us none of those things-at least it does not teach them so definitely as we would need to know them to be able to make any practical use of its assistance.

In addition to these, fertile soils must also contain carbon, oxygen, nitrogen, and hydrogen, which are called the organic parts of soils, from their great preponderance in vegetables and animals. of which they constitute from 90 to over 99 per cent.

General results of analytical examinations of soils.

1. A due admixture of organic matter is favorable to the fertility of a soil.
2. This organic matter is the more valuable in proportion to the quantity of nitrogen it holds in combination.
3. The mineral part of the soil must contain all those substances which are met with in the ash of the plant, and in such a state of chemical combination that the roots of plants can readily take them up in the requisite proportions.

Table, showing the composition, in 1000 parts, of different kinds of soil.

| constiterets. | Fertla millout manure. | Fartile mith menure. | Very Barren. |
| :---: | :---: | :---: | :---: |
| Organic matter, | 97. | 50. | 40. |
| Silica, | 648. | 833. | 758. |
| Alumina, | 67. | 61. | 101. |
| Lime, | 69. | 18. | 4. |
| Magnesia, | 8. | 8. | 1. |
| $\begin{aligned} & \text { Oxide of Iron, } \\ & \text { in of Mangenese, } \end{aligned}$ | 61. 1. | $\begin{array}{r} 30 . \\ 3 . \end{array}$ | $\underset{\text { traco }}{91 .}$ |
| Potash, | 2. | trace | .... |
| Soda, | 4. | $\cdots$ | .... |
| Chlorine, Sulphuric Acid, a | 2. | i. | $\ldots$ |
| Phospboric " ${ }^{\text {a }}$ | 4. | 2. | $\cdots$ |
| Carbonic " | 40. | 4. |  |
| Loss, | 15. | ... | 5. |

Note.--The soil designated "fertile without manure" has been cultivated sixty years without manuring, yielding abundant crops. The soil designated "fertile with manure" has been cultivated over forty years, yielding good crops with ordinary manuring; while that designated "very barren" could scarcely be made to yield anything by the greatest manuring and most careful cultivation.

The following is an analysis of three specimens of very fertile soils, made by Sprengel:-

Soil near
Osterbruch. .84 .510
Silica, Quartz, Sand, and Silicates
Alumina . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.435
Oxides of $\mathbf{6}$. 2.395
Oxides of Manganese. 0.450

Lime. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.740
Magnesia . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.525
Potash and Soda extracted by water..... 0.009
Phosphoric Acid. . . . . . . . . . . . . . . . . . . . . . 0.120
Sulphuric Acid. . . . . . . . . . . . . . . . . . . . . . . 9.046
Chlorine in common Salt. . . . . . . . . . . . . . . 0.006
Humic Acid. . . . . . . . . . . . . . . . . . . . . . . . . . 0.780
Insoluble Humus. . . . . . . . . . . . . . . . . . . . 2.995
Organic matters containing Nitrogen...... 0.960
Water. 0.029

From the banks of the Weser, near Hoya. near Weserbe.

| 71.849 | 83.318 |
| ---: | ---: |
| 9.350 | 3.085 |
| 5.410 | 5.840 |
| 0.925 | 0.620 |
| 0.987 | 0.720 |
| 0.245 | 0.120 |
| 0.007 | 0.005 |
| 0.131 | 0.065 |
| 0.174 | 0.025 |
| 0.002 | 0.006 |
| 1.270 | 0.800 |
| .550 | 4.126 |
| 2.000 | 1.220 |
| 0.100 | 0.150 |

The above had remained a long time in pasture, and the second was remarkable for the fattening qualities of its grass when fed to cattle.

The following are arable lands of great fertility :-

|  | From Ohio. |  | Soil from Belgium. |
| :---: | :---: | :---: | :---: |
| Soil from Moravia, | Soil. | Subsoil. |  |
| Silica and fine Sand. . . . . . . . .77.209 | 87.143 | 94.261 | 64.517 |
| Alumina...................... 8.514 | 5.666 | 1.376 | 4.810 |
| Oxides of Iron. . . . . . . . . . . . 6.592 | 2.220 | 2.336 | 8.316 |
| Oxide of Manganese. . . . . . . . 1.520 | 0.360 | 1.200 | 0.800 |
| Lime. . . . . . . . . . . . . . . . . . . . 0.927 | 0.564 | 0.243 | $\begin{aligned} & \text { Carb. of } \\ & \text { Lime. } \end{aligned} 9.403$ |
| Magnesia.. . . . . . . . . . . . . . . . 1.160 | 0.312 | 0.310 | $\text { Carb. of } 10.361$ |
| Potash, chiefly combined with |  |  | Mag. |
| Silica. . . . . . . . . . . . . . . . . . 0.140 | $0.120\}$ | 0.240 | $\{0.100$ |
| Soda, ditto. . . . . . . . . . . . . 0.640 | $0.025\}$ | 0.240 | $\{0.013$ |
| Phosphoric Acid, combined with Lime and Ox. of Iron. . 0.651 | 0.060 | trace | 1.221 |
| Sulphuric Acid and Gypsum. . 0.011 | 0.027 | 0.034 | 0.009 |
| Chlorine in common Salt. . . . 0.010 | 0.036 | traee | 0.003 |
| Carbonic Acid united to tho |  |  |  |
| Lime. | 0.080 | .... |  |
| Humic Acid. . . . . . . . . . . . . . 0.978 | 1.304 |  | 0.447 |
| Insoluble Humus. . . . . . . . . . . 0.540 | 1.072 | ... | .... |
| Organic Substances containing |  |  |  |
| Nitrogen. . . . . . . . . . . . . . . 1.108 | 1.011 | -•** | . $\cdot$.' |

"Of these soils, the first had been cropped for 160 years successively, without either manure or naked fallow. The second was a virgin soil, and celebrated for its fertility. The third had been unmanured for twelve years, during the last nine of which it had been cropped with beans, barley, potatoes, winter barley and red clover, clover, winter barley, wheat, oats, naked fallow."-Johnston.
Depth of soil-its importance.
If 50 be assumed as the value of a given soil when it is six inches deep, its value when of different depths will be as follows:-


Hence each farmer may make an estimate for himself, with regard to every variety of his soil, whether the cost of increasing its depth will equal or exceed its value after the task is performed.
This, of course, supposes that the soil is of the same quality throughout its whole depth, and it refers only to its chemical composition. There are other considerations which make the depth of the soil more important even than the above table will indicate. If a soil is equally rich throughout its whole depth, it would be of more than double value if of double depth; for its ability to withstand drought, and its great capacity to absorb the water of heavy rains (without being made too wet) would made it better, irrespective of the elements of fertility that it might contain. Then again, some soils which are of apparently no value may be made quite fertile by being ploughed a little deeper than has been done.

Table, showing the weight per cubio foot of the different kinds of earth.

| Loose earth or | 95 lbs . | Clay..................... 135 lbs . |
| :---: | :---: | :---: |
| Common soil. | 124 | Clay and stones. . . . . . . . 160 " |
|  | 127 | Brick..................... 125 |

Note.-23 cubic feet of sand, 18 cubic feet of earth, or 17 cubic feet of clay, make a ton. Eighteen cubic feet of
gravel or earth, before digging, make 27 cubic feet when dug.

As a rough estimate, it may be stated that an acre of ordinary soil weighs 100 tons for every inch of its depth.

## EXHAUSTION OF SOILS.

Each crop taken from a field exhausts the soil to the extent of the inorganic or earthy substances that are found in the totality of the crop removed. Unless, therefore, these elements are returned to the soil in some shape it gradually loses its fertility, and finally refuses to produce altogether. Hence the necessity for manuring, irrigating, or resting the soil, that it may again, by accumulating these elements, recover its fertility. By returning a crop in toto to the soil, by ploughing it in or leaving it to decay and mingle again with it, it accumulates in mass and grows in fertility, not by the substances thus returned to it, but by fertilizing elements gathered in or combined from the atmosphere, by rains and dews descending on it, and by capillary attraction from beneath.
$B y$ knowing the composition of the subtracted crops and the added manures, the farmer can keep a debit and credit account with his fields, which will be sufficiently accurate to enable him always to keep his land improving. To enable him to ascertain approximately what his various crops remove from the soil, we introduce the following tables, \&c. To
ascertain what will replace this subtraction, let him consult the section on manures.

Table, showing the organic substances removed from the soil in 1000 lbs. each of the following crops when perfectly dry.

|  | Carbon. lbs. | $\begin{aligned} & \text { Hydrogen. } \\ & \text { lbs. } \end{aligned}$ | Oxygen. 1 lbs . | Nitrogen. lbs. | $\begin{gathered} \text { Ash. } \\ \text { lbs. } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Hay. | 458 | 50 | 387 | 15 | 90 |
| Red Clover Hay | 474 | 50 | 378 | 21 | 77 |
| Potatoes. | 440 | 58 | 447 | 15 | 40 |
| Whoat-. | 461 | 58 | 434 | 23 | 23 |
| Wheat straw. | 484 | 53 | 3897 | 31 | 70 |
| Oats. | 507 | 64 | 367 | 22 | 40 |
| Oat-straw. | 501 | 54 | 390 | 4 | 51 |
|  |  |  |  | Johnstom. |  |

Note.-Of all the vegetable productions which are gathered as food for man or beast in their dry state-

Carbon forms nearly one-half by weight.
Oxygen rather more than one-third.
Hydrogen little more than five per cent.
Nitrogen from $1 \frac{1}{2}$ to 4 per cent.
Earthy matter from 1 to 20 per cent.
Table, showing the quantity of inorganic matter removed from the soil in 1000 lbs. each of the following crops in their ordinary state of dryness.

|  |  | lbs. |  | lbs. |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Wheat | about | 20 | Beans. . . . | bout | 30 |
| Wheat-s | " | 50 | Реаs. | 4 | 30 |
| Barley. | " | 30 | Pea-straw | ${ }^{6}$ | 50 |
| Barley-straw | 6 | 50 | Meadow Hay | 4 | 50 to 100 |
| Oats.. | ، | 40 | Clover Hay | 6 | 90 |
| Oat-straw | " | 61 | Rye-grass Hay. | " | 95 |
| Rye | 4 | 20 | Potatoes. | " | 8 to 15 |
| Rye-straw | " | 40 | Turnips | " | 5 to 8 |
| Indian Corn. . | ${ }^{6}$ | 15 | Carrots. | 6 | 15 to 20 |
| Indian Corn st | " | 50 |  |  |  |

Johnston.

Table, showing the quantity, and leinds of inorganic matter removed from the soil in 1000 lbs. each of the following crops.

|  |  | $\begin{aligned} & \text { d } \\ & 8 . \end{aligned}$ | $\begin{aligned} & \dot{0} \\ & \stackrel{B}{\boldsymbol{B}} \end{aligned}$ |  | 惑 |  |  |  |  | $\begin{aligned} & \text { 名 } \\ & \text { 웅 } \\ & \text { \% } \\ & \text { \% } \end{aligned}$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Whes | 2.25 | 2.40 | 0.98 | 0.90 | 0.26 | 4.00 | 0.60 | 0.40 | 0.10 | tract |  |  |
| 6. Stra | 0.20 | 0.29 | 2.40 | 0.32 | 0.90 | 28.70 | 0.37 | 1.70 | 0.80 |  |  | 35.18 |
| Barley-Grain | 2.78 | 2.90 | 1.06 | 1.80 | 0.25 | 11.82 | . 59 | 2.16 | 0.19 | trace |  | 23.49 |
| * Strav | 1.80 | 0.48 | 5.54 | 0.78 | 1.46 | 38.50 | 1.18 | 1.00 | 0.70 | 0.14 | ). 20 | 52.42 |
| Oats-Grain | 1.50 | 1.32 | 0.86 | 0.87 | 0.14 | 19.7 E | 0.35 | 0.70 | 0.10 | 0.40 |  | 25.80 |
| 4 Straw | 8.70 | 0.02 | 1.52 | 0.22 | 0.05 | 4588 | 0.79 | 0.12 | 0.05 | 0.12 | 0.02 | 57.40 |
| Rye-Grain | 5.32 | - ${ }^{\text {\% }}$ | 1.22 | 0.44 | 0.24 | 1.84 | 0.23 | 0.46 | 0.09 | 0.4 ¢ | 0.34 | 10.40 |
| " Straw | 0.52 | 0.11 | 1.76 | 0.12 | 3.251 | 22.97 | 1.70 | 0.51 | 0.17 |  |  | 27.93 |
| Field Bean | 4.15 | 8.16 | 1.65 | 1.58 | 0.34 | 1.26 | 0.89 | 2.92 | 0.41 |  |  | 21.35 |
| 13ean S Strap | 16.56 | 0.50 | 8.24 | 2.09 | 0.10 | 2.20 | 0.34 | 2.26 | 0.80 | 0.07 | 0.05 | 31.21 |
| Field $\}$ Pea. | 8.10 | 7.39 | 0.68 | 1.36 | 0.20 | 4.10 | 0.53 | 1.90 | 0.88 | 0.10 |  | 24.64 |
| Pea $\}$ Stra | 2.35 |  | 27.30 | 3.42 | 0.86 | 9.96 | 3.37 | 2.40 | 0.04 | 0.2 ! | 0.07 | 49.71 |
| Potatoes $\left\{\begin{array}{l}\text { Roots }\end{array}\right.$ | 4.028 | 2.334 | .331 | . 324 | . 05 | . 084 | .540 | - 401 | . 160 | . $\mathrm{C3} 2$ |  | 8.284 |
| Fotatoes $\{$ Tops. | 8.19 | - .09 | 1297 | 1.70 | . 04 | 4.94 | . 42 | 1.97 | . 50 | . 02 |  | $30.84$ |
| Turnips, R Ronts | 2.386 | 1.048 | . 752 | . 254 | . 036 | . 388 | . 801 | . 367 | .239 | . $03 \%$ |  | 6.803 |
| Turnips, $\{$ Leave | 3.23 | 2.24 | 6.20 | . 59 | . 03 | 1.28 | 2.62 | . 98 | . 87 | . 17 |  | 18.09 |
| Carrots.... | 3.633 | . 922 | 657 | . 384 | -039 | . 137 | . 270 | . 514 | . 070 | . 038 | . 080 | 6.619 |
| Parsaipa. | 2.079 | . 702 | . 488 | .270 | . 024 | .162 | . 192 | . 100 | . 178 | . 005 | ? | 4.180 |
| Rye Grass. | 8.81 | 3, 94 | 7.34 | 0.90 | 031 | 27.72 | 3.63 | 0.25 | 0,08 |  |  | 52.88 |
| Red Clover. | 19.95 | 5.29 | 27.80 | 3.33 | 0.14 | 3.61 | 4.47 | 6.57 | 3.62 |  |  | 74.78 |
| White Clove | 71.05 | 5.79 | 33.48 | 3.05 | 1.90 | 14.73 | 3.53 | 6.05 | 2.11 | 0.63 |  | 91.32 |
| Lucern. | 13.40 | 6.15 | 48.3' | 3.48 | 0.30 | 3.30 | 4.04 | 13.07 | 3.19 | 0.50 |  | 9562 |
| Eainfoin... | 20.67 | 4.37 | 21.95 | 2.88 | 10.66 | 5.00 | 3.41 | 9.16 | 1.57 |  |  | 69.67 |

Sprengel.
Note.-In the foregoing table, the grain, beans, peas, straw, and hay, are estimated after they have been dried in the air; the roots as they have been taken from the field. The potato loses in drying 69 per cent. of water; the turnip 91 ; the carrot 87 ; the turnip-leaf 86 ; the carrot-leaf, parsnip, and parsnip-leaf, each 81; and the cabbage 93.

Besides the organic elements present in each of the above crops, and whieh form about 97 per cent. of the entire dried weight of each, it is not only neeessary that all the above

[^8]inorganic substances should exist in the soil, but that they be also found in a form adapted to the wants of the growing crop.


Analysis of the Ash of the Hop, showing the elements it removes from the soil.

- In 100 parts there are of

Vine \& Blossom. Blossom.
Silica.................. 13.24
Chloride of Sodium... 7.73 " Potassium. 3.77
Soda. . . ............... 0.13
Potash. .... . ....... 21.49
Lime................ . . . . . . 34.79
21.05
25.18
15.98 Alumina................ a trace

Vine \& Blossom. Blossom.
5.77
5.41
9.08
7.45
1.67

The following tables, extracted from Waring's Elements of Agriculture, will be found convenient for ordinary computations :-

Amount of Inorganic Matter removed from the soil by ten bushels of grain, dec., and by the straw, dic., required in their production-estimated in pounds:

|  | Wheat. | 1200 lbs Wheat Straw. | Rye. | $\begin{aligned} & 1620 \mathrm{lbs} . \\ & \text { Rye } \\ & \text { Straw. } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: |
| Potash. | 2.86 | 8.97 | 2.51 | 11.34 |
| Soda. | 1.04 | . 12 | 1.33 | . 20 |
| Lime. | . 34 | 4.84 | . 56 | 5.91 |
| Magnesia. | 1.46 | 2.76 | 1.18 | 1.58 |
| Oxide of Iron. | . 08 | . 94 | .15 | . 88 |
| Sulphuric Acid. | . 03 | 4.20 | . 11 | . 05 |
| Phosphoric Acid. ..................... | 6.01 | 2.22 | 5.64 | 2.49 |
| Chlorine... |  | . 79 |  | . 30 |
| Silica.. | . 14 | 47.16 | . 05 | 42.25 |
| Pounds carried off. | 12 | 72 | 111 | 66 |


|  | Corn. | 1620 lbs Corn Stalks. | Oats. | 700 lbs. Oat Straw. |
| :---: | :---: | :---: | :---: | :---: |
| Potash. | 2.78 | 6.84 | 1.69 | 12.08 |
| Soda |  | 19.83 |  |  |
| Lime. | . 12 | 6.02 | . 39 | 3.39 |
| Magnesia.. .. . . . . . . . . . . . . . . . . . . . . | 1.52 | 4.74 | . 64 | 1.59 |
| Oxide of Iron. . . . . . . . . . . . . . . . . . . |  | . 57 | . 02 | . 78 |
| Sulphuric Acid. . . . . . . . . . . . . . . . . . . |  | . 36 | . 66 | 1.41 |
| Phosphoric Acid. . . . . . . . . . . . . . . . . . | 4.52 | 12.15 | 2.80 | 1.07 |
| Chlorine... . . . . . . . . . . . . . . . . . . . . . . . . |  | 1.33 | . 02 | 1.36 |
| Silica. | . 06 | 19.16 | . 18 | 20.32 |
| Pounds carried off. . | 9 | 71 | $6 \frac{1}{2}$ | 42 |



|  | $\begin{gathered} 2000 \mathrm{lbs.} \\ \text { Cabbage. } \\ \text { Water } 9-10 \end{gathered}$ |
| :---: | :---: |
| Potash. | 5.25 |
| Soda. | 9.20 |
| Lime.. | 9.45 |
| Magnesia. | 2.70 |
| Oxide of Iron. | . 25 |
| Sulphuric Acid. | 9.60 |
| Phosphoric Acid. | 5.60 |
| Chlorine. | 2.60 |
| Silica... | . 35 |
| Pounds carried off. | 45 |

## MANURES.



In order to restore to the soil the matters which have been taken from it by the removal of its produce, as well as to add to its power to produce-to make it richer, or to keep it from growing poorer-we make use of what are known as manures.

This term is a very comprehensive one, and is taken to mean all substances-whatever their character or originwhich will have the effect of causing a larger growth of vegetation.

Manures may be either mechanical or chemical in their
mode of action, or they may partake of both of these ch ${ }_{\omega}$ racters. For instance, barn-yard manure is both mechanical and chemical in its effect.

By reason of its bulk and its coarseness it loosens the soil and makes it more porous when mixed with it; when it is used ac a top-dressing it shades the ground, and protects it in a measure against the effect of frost and of too great heat; being a very active absorbent of moisture, it modifies the effect of drought; its decomposition produces heat, and raises the temperature of the soil.

## All of these are mechanical effects.

On the other hand, it affords to the roots of plants substances which enter directly into their structures, as chemical constituents; it also yields various acids, alkalies, and salts which enter into combination with the constituent parts of the soil, and-in one way or another-make them more available as plant food.

These are chemical effects.
The use of Manures.
In the use of manures the farmer should be guided not only by the effect that will be produced on the immediate crop-although this is, of course, the first considerationbut quite as much by the condition in which the soil will be left for the production of future crops. Unless he does this he may find that, while he has reaped a temporary benefit, he has inflicted a lasting injury ou his fields.

It will be remembered that in our account of the soil it
was shown that the amount of mineral plant food that is actually present in the soil in an available form is extremely limited. In a state of nature, our fields would produce only such crops as could be fed by the small amount of this plant food which is rendered available from year to year, and there would be no diminution of production. On the contrary, the decay of the crop of one year would probably add to the supply available for the next year. The removal of the crop by man, not the production of a crop which on decay returns its elements to the soil, is what impoverishesis what makes the use of manure vitally necessary on all but virgin lands.
The larger the crop-provided it decays on the land-the more the fertility of the soil is increased.
The larger the crop-provided it is removed from the land-the more the fertility of the soil is diminished.
If the crop is made larger by the use of manure, and is removed from the land, the manure has caused a larger amount of mineral plant food to be taken away. But if the manure itself contains the full equivalent of what enters into the crop, and so makes up for its drain upon the soil, there will be no impoverishment. If, on the other hand, the manure does not contain the equivalent of the ash-constituents of the crop, but has only stimulated it to take an extra supply from the soil, the injury is obvious.
In some cases, a soil that will produce 10 bushels of wheat without manure will produce 25 bushels if dressed with 100
lbs. of sulphate of ammonia. The extra 15 bushels contain about 18 lbs. of mincral matter more, which was supplied by the manure, and this is equal to one and a half year's supply for the natural crop of the land. The effect of this sort of farming is that the soil is made to produce more than it can afford to in one year, and has its supply of mineral plant food exhausted to the detriment of its future productiveness.

Twenty years ago, the wheat lands of Delaware, which had been producing very small crops, were' made, by the use of very small doses of Peruvian guano, to double, triple, even quadruple their yield. The farmers were immensely elated. They had found a sort of philosopher's stone, and a few years would make their fortune. Alas for their hopes -a very few years demonstrated the fact that the guano had been a curse rather than a blessing. Their lands were poorer than ever, and even largely increased doses of the specific were powerless to bring them up even to their old standard.

Had the wheat and straw been consumed on the farm, aud all of their mineral constituents returned to the soil, the guano would have been a means of great permanent improvement.

Or, had the same increase of production been effected by the use of a manure containing the full equivalent of what the crop was to take from the soil, the impoverishment of the land would have been prevented.

The foregoing is intended to convey the fundamental ideas which we should bear in mind in deciding what manures we are to use, and in what quantity. It is quite impossible to establish any set of rules which shall be an exact guide for all cases, but the following are always a safe guide:-

1. Apply in the manure the full quantity of the different ash ingredients of the crops that will be produced before manure will be applied again.
2. Procure from abroad manure containing the full quantity of the different ash ingredients of all produce sold from the farm, and allow none to be wasted at home.

A close adherence to these two rules, accompanied by good cultivation, and the draining of such land as needs draining, will make any farmer rich who exercises ordinary judgment and prudence in the management of his affairs.

To speak with scientific accuracy, it is not necessary to returu quite all that the crops take away.

The processes by which soils were originally formed being still in operation, there is a constant fresh development of plant-food in the ground, and this will, in greater or less degree, compensate for the loss by the removal of crops.

Practically, however, it is best to place this development of fresh matter to the account of improvement, and, by making up the full amount of all removals, to make sure that the land is constantly growing better instead of worse.

As want of space forbids a more full discussion of the
established theories concerning the use of manure, the attention of the reader is called to the following :-

Classification and description of manures.
Manures naturally divide themselves into such as are of mineral, of vegetable, and of animal origin.

Mineral manures are such as originate from various mineral substances, such as lime, which is the product of limestone, marble, chalk, or marl, after the carbonic acid has been expelled by an intense heat; marls, which are composed of carbonate of lime, mixed with clay, sand, or loam; shell sand, calcareous sand, green sand marl, gypsum, phosphate of lime, salt, and salts of various kinds, $\& c$.

Vegetable manures are sucll as are produced from decomposed vegetable matters, which also contain some of the inorganic or mineral substances.

Animal manures consist chiefly of the flesh, blood, bones, horns, and hair of sea and land animals, aud of the solid and liquid excrements of land animals and birds, and also contain some of the inorganic or mineral matters.

## Analysis of Fish Guano.

| Water expelled by $212^{\circ}$ heat.. | 8.06 | Sulphate of Magnesia | 0.71 |
| :---: | :---: | :---: | :---: |
| Sand..................... . | 0.33 | Potash. | 2.05 |
| Oil | 2.40 | Soda. | 2.42 |
| Organic Matter | 50.72 | Chloride of Sodium. | 1.12 |
| Super-Phosphate of Lime. | 9.85 | Sulphate of Ammonia | 2.72 |
| Sulphate of Lime, Hydrated. | 19.62 |  |  |

Analysis of Perivian Guano.
In every 100 parts there are of
Organic Matter, containing Nitrogen, including Urate of Ammonia, and capable of affording from 8 to 17 per cent. of Ammonia, by slow ..... 50.change iu the soil
Wuter ..... 11.
Phosphate of Lime ..... 25.
Ammonia, Phosphate of Magnesia, Phosphate of Ammonia and Oxa-
13.
13.
late of Ammonia, containing from 4 to
Silicious matter from the crops of birds. ..... 1.
Dr. Ure.
Another analysis.
Water. ..... 13.09
Organic Matter, containing Ammonia. ..... 53.17
Common Salt and Sulphate of Soda ..... 4.63
Carbonate of Lime ..... 4.18
Phosphate of Lime and Magnesia. ..... 23.54
Silicious Matter or Sand. ..... 1.39

Professor S. W. Johnson publishes the following table:Analysis of Perwvian Guano.

|  | I. | II. | III. | IV. |
| :---: | :---: | :---: | :---: | :---: |
| Water... ............ $\}$ |  | 12.6312 .70 | $\} 68.0068 .70$ | 59.46 |
| Organic Matter........ $\}$ | 66.3265 .18 | 52.2751 .46 |  |  |
| Ammouia, potential. <br> " actual. | 5.82 5.95 <br> 8.93 9.08 | $\} 16.03 / 15.98$ | 17.8618 .85 | 16.32 |
| Phosphoric Acid soluble in water.. . . . . . . . . . . | 4.69 3.64 | 15.1914 .08 |  |  |
| Phosphoric Acid insoluble in water. $\qquad$ | 10.0510 .50 | 15.1914 .08 |  |  |
| Sand, \&c., insolubloin acids | 1.69 (1.52 | 2.452 .66 |  |  |
| $\left.\begin{array}{l} \text { Phosphate of Lime, } \\ \text { equivalent to total } \\ \text { Phosphoric Acid. } \end{array}\right\} \text { Ar. }$ | 21.28 | 31.69 |  |  |

Analysis of Bolivian Guano.
Water ..... 6.91
Organic Matter containing Ammonia ..... 55.52
Common Salt and Sulphate of Soda. ..... 6.31
Carbonate of Lime. ..... 3.87
Phosphate of Lime and Maguesia. ..... 25.68
Silicious Matter or Sand. ..... 1.71

Note.-The guano of the Lobos Islands is from 25 to 33 per cent. less valuable than the above.

How to select a good article of guano.

1. The drier the better--there is less water to pay for and transport.
2. The lighter the color the better-it is the less completely dissolved.
3. If it has not a strong ammoniacal smell, it ought to give off such a smell when a spoonful of it is mixed with a spoonful of slaked lime in a wine-glass.
4. When put into a tumbler with water and stirred well, and the water and fine matter poured off, it ought to leave but little sand or stones.
5. When heated to redness over a fire or bright flame, until the animal matter is burned away, the ash should nearly all dissolve in dilute muriatic acid.
6. In looking at the printed analysis (which almost all dealers furnish), see that the per cent. of water is small; that the organic matter containing ammonia, approaches to 50 or 60 per cent.; that the phosphates do not exceed 20 per cent., and the common salt and sulphate of soda do not exceed 5 or 6 per cent.-Tohnston.

How to Apply Guano.-From 200 to 500 lbs . per acre is a proper dressing, the largest quantity being required for the more sterile soils. Mix it thoroughly for a few days with five times its bulk of vegetable mould or loam and some
charcoal or gypsum, after breaking the lumps and sifting in alternate layers. Avoid the use of ashes or lime, as they tend to expel the ammonia. Keep it under cover, beyond the reach of water or rains, until used. It may then be scattered broadeast upon meadows or grain; or placed near the seeds or young plants in the hill.

Analysis of bone (crushed) manure.
In 100 parts, there are of

$\mathrm{T}_{\text {able, }}$ showing the comparative value of animal manures, with farm-yard manure as the standard.
100 lbs . farm-yard manure is equal to

| 125 | s. solid | rem | the | cow. | lbs. | Dry Flesh. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 73 | ' ${ }^{\text {c }}$ | " | " | horse. | 5 ، | Pigeon's Dung. |
| 91 | " liquid | " | " | cow. | 15 | Liquid Blood. |
| 16 | " ${ }^{\text {c }}$ | " | " | harse. | 4 " | Dry Blood. |
| 98 | " mixed | " | " | cow. | 3 | Feathers. |
| 54 | , | " | " | horse. | 3 | Cow Hair. |
| 36 | " | " | " | sheep. | 3 " | Horn Shavings. |
| 64 | " " | " | ${ }^{6}$ | pig. | 312 ${ }^{4}$ | Dry Woollen Rag |

Johnston.
Note.-The most powerful substances in the above table, viz., dry woollen rags, horn shavings, cow hair, feathers, \&c., hold little or no water, and contain the fertilizing elements of the others in very compact forms. They show less immediate sensible effect upon the crop than the others, because, being so dry and compact, they are long decomposing, but continue to evolve fertilizing matter long after the softer and more fluid manures have spent their force.

Decomposed vegetables as manure.
The characteristic distinction between animal and vegetable manures lies in the fact of the former containing a much larger proportion of nitrogen than the latter.
There are two grounds upon which the relative values of different vegetable substances as manures may be estimated. First, from the quantity and kind of inorganic matter they contain. Second, from the proportion of nitrogen present in each.
Table, showing the relative values of decomposed vegetables as manures, from the inorganic matter they contain.


Johnston.
Table, showing the relative values of decomposed vegetables as manures, from the nitrogen they contain.
100 lbs . of farm-yard manure is equal to

| 130 | lbs. | Wheat Str | , |
| :---: | :---: | :---: | :---: |
| 150 | " | Oat | * |
| 180 | 4 | Barley | ${ }^{6}$ |
| 85 | ${ }^{\prime}$ | B'kwh't " | " |
| 45 | " | Pea " | " |
| 50 | ، | Wheat Chaff | " |
| 80 | " | Green Grass | 4 |
| 75 | " | Potato Tops | ${ }^{*}$ |


$|$| 80 | lbs | Fresh Seaweed | Manure. |
| ---: | :--- | :--- | :---: |
| 20 | " | Dried |  |
| 26 | " | Bran of Wheat or Corn | $"$ |
| 13 | $"$ | Malt Dust | $"$ |
| 8 | " | Rape Caǐe | $"$ |
| 250 | " | Pine Sawdust* | $"$ |
| 180 | " | Oak | " |
| 25 | $"$ | Coal Soot | $"$ |

Boussingault.

Notes.-The immediate effect of vegetable manures in hastening the growth of plants is dependent, in a great measure, upon the quantity of nitrogen they contain, which is given off chiefly in the form of ammonia during their decay in the soil, and may be nearly exhausted in a single season.

Their permanent effect and value is to be estimated by the quantity and quality of inorganic matter they contain, or ash they leave when burned, and may not be exhausted for several years.

Besides inorganic matters and nitrogen, there are other ingredients in vegetable manures which are necessary to the sustenance and growth of plants.

Each of the elements present in decayed or decaying plants is capable either of ministering to, or preparing food for such as are still alive.

All refuse vegetable or animal matter on a farm, such as straw, leaves, vegetable tops, chips, sawdust, ashes, dead animals, bones, horns, hoofs, entrails, \&c., \&c., should be carefully saved and composted, or otherwise made into manure for the use of the farm.

Analysis of a manure heap in the condition usually applied to the field.


## Inorganic matters.

| Soluble in Muriatic Acid. | Soluble in Wat |  |
| :---: | :---: | :---: |
| Silica. . . . . . . . . . . . . . . . . . . 27.01 | Potash | 3.22 |
| Phosphate of Lime......... 7.11 | Soda. | 2.73 |
| " Magnesia....... 2.26 | Lime. | 0.34 |
| " Iron........... 4.68 | Magnesia. | 0.26 |
| Carbonate of Lime. ........ 9.34 | Sulphuric Acid.. | 3.27 |
| " Magnesia.. .... 1.63 | Chlorine.. | 3.15 |
| Sand.................. . . . . . 30.99 | Silica.. | 0.04 |
| Carhon ... . . . . . . . . . . . . . . . . 83 |  |  |
| Alkali and loss.. . . . . . . . . . . . . 3.14 |  | $\begin{aligned} & 13.01 \\ & 86.99 \end{aligned}$ |
| 86.99 |  |  |
|  | Richardson. | 100.00 |

Analysis of other specimens of fresh farm-yard manures.

|  | Farm yara Manure From Kent. | Farm-yard Manure From Surrey. |
| :---: | :---: | :---: |
| Per centage of Ash. | 9.2 | 9.6 |
| Silica | 70.79 | 71.32 |
| Potash | 3.32 | 5.14 |
| Soda. | 0.92 | 1.68 |
| Lime | 6.90 | 12.32 |
| Magnesia. | 0.56 | 0.82 |
| Common Salt. | 1.43 | 1.22 |
| Phosphate of Iron. | 2.04 | 2.03 |
| " Alumi | 1.53 | 2.54 |
| Sulphuric Acid. | 1.89 | 1.57 |
| Phosphoric Acid... | 1.58 | 1.27 |
| Manganese . . . . . | trace | .... |
|  | 90.96 | 99.91 |

Allen \& Greenhill.

Composition of fresh farm-yard manure (composed of horse, pig, and cow dung, about fourteen days old). Analysis made November 3, 1854, by Dr. Augustus Voclcker, Professor of Chemistry in the Royal Agricultural College, Cirencester, England :-
66.17
Water
2.48

* Soluble organic matter
Soluble inorganic matter (ash)-
Soluble silica (silicic acid) ..... 237
Phosphate of lime ..... 299
Lime .....  066
Magnesia ..... 011
Potash ..... 573
Chloride of sodium ..... 030
Carbonic acid and loss .....  218
$\dagger$ Insoluble organic matter ..... 25.761.54
Insoluble inorganic matter (ash)- Soluble silica
Insoluble silica $\{$ silicic acid $\}$ .....  967(Containing phosphoric acid, .178)(Equal to bone earth, .386)

Lime

Lime

Lime

Lime

Lime

Lime .....  .....  .....  .....  ..... 1.120 .....  .....  .....  .....  ..... 1.120 .....  .....  .....  .....  ..... 1.120 .....  .....  .....  .....  ..... 1.120 .....  .....  .....  .....  ..... 1.120 .....  .....  .....  .....  ..... 1.120

Magnesia.

Magnesia.

Magnesia.

Magnesia.

Magnesia.

Magnesia. .....  .....  .....  ..... 143 .....  .....  .....  ..... 143 .....  .....  .....  ..... 143 .....  .....  .....  ..... 143 .....  .....  .....  ..... 143 .....  .....  .....  ..... 143

Potash

Potash

Potash

Potash

Potash

Potash .....  .....  .....  099 .....  .....  .....  099 .....  .....  .....  099 .....  .....  .....  099 .....  .....  .....  099 .....  .....  .....  099

Soda.

Soda.

Soda.

Soda.

Soda.

Soda. .....  .....  019 .....  .....  019 .....  .....  019 .....  .....  019 .....  .....  019 .....  .....  019
Sulphuric acid
Sulphuric acid
Sulphuric acid
Sulphuric acid
Sulphuric acid
Sulphuric acid ..... 061 ..... 061 ..... 061 ..... 061 ..... 061 ..... 061
Carbonic acid and loss
Carbonic acid and loss .....  484 .....  484 .....  484 .....  484 .....  484 .....  484
Oxide of iron, alumina, with phosphates. .....  596- 4.05

* Containing nitrogen ..... 149
Equal to ammonia ..... 181
$\dagger$ Containing nitrogen ..... 494
Equal to ammonia. ..... 599
The whole manuro contains ammonia in a free state ..... 034
*     * in the form of salts .....  088

According to this analysis one ton ( 2000 lbs .) farm-yard manure contains-
Soluble silica (silicic acid)...................... 24 lbs.
Anmonia (actual or potential)................. $15 \frac{3}{5}$ "
Phosphate of lime ............................. $13 \frac{7}{10}$ "
Lime........................................ $23 \frac{7}{10}$ "
Magnesia .................................... $3 \frac{1}{10}^{\prime \prime}$
Potash ....................................... 1313. "
Soda........................................ 12 ${ }^{\frac{3}{6}}$ "
Common salt................................ $\frac{\theta^{6}}{10}$ "
Sulphuric acid ................................ $2^{2 \frac{1}{3}}$ "
Water...................................... 1323年"
Woody fibre, \&c.............................. 579 "
Of course no two samples of farm-yard manure are exactly of the same composition. That analyzed by Dr. Voelcker was selected with much care, as representing a fair average.

## green sand marl (of new jersey).

Protoxide of iron 15.5

Alumina...,........................................ 6.9
Lime............................................... 5.3
Magnesia ........................................... 1.6
Potash ............................................ 4.8
Soluble silica........................................ . . 32.4
Insoluble silica and sand............................ 19.8
Sulphuric acid...................................... . . 6
Phosphoric acid................................... 1.3
Water............................................. 8.0
Carbonic acid, \&c.................................. 3.8
100.0

This is an average of three analyses copied from Prof. Geo. H. Cook's Report of the Geology of New Jersey. According to this estimate one ton ( 2000 lbs .) of green sand inarl contains-

| Lime | 106 lbs | Soluble silicic acid. 648 lbs . |
| :---: | :---: | :---: |
| Magnesia | 32 " | Sulphuric acid..... 12 |
| Potash | 96 | Phosphoric acid*... 26 |

To give a better idea of the formation and composition of stable manure, the following is copied from "Waring's Elements of Agriculture":-
"digestion and its products.
"Let us suppose that we have a full-grown ox, which is not increasing in any of his parts, but only consumes food to keep $u p$ his respiration, and to supply the natural wastes of his body. To this ox we will feed a ton of hay which contains organic matter, with and without nitrogen, and soluble and insoluble earthy substances. Now let us try to follow the food through its changes in the animal, and see what becomes of it. Liebig compares the consumption of food by animals to the imperfect burning of wood in a stove, where a portion of the fuel is resolved into gases and ashes (that is, it is completely burned), and another portion, which is not thoroughly burned, passes off as soot. In the animal action in question, the food undergoes changes which are similar to this burning of wood. A part of the food is digested and taken up by the blood,

[^9]while another portion remains undigested, and passes the bowels as solid dung-corresponding to the soot of combustion. This part of the dung, then, we see is merely so much of the food as passes through the system without being materially changed. Its nature is easily understood. It contains organic and mineral matters in nearly the condition in which they existed in the hay. They have been rendered finer and softer, but their chemical character (their composition) is not materially altered. The dung also contains small quantities of nitrogenous matter, which has leaked out, as it were, from the stomach and intestines. The digested food, however, undergoes further changes which affect its character, and it escapes from the body in three ways-i. e., through the lungs and skin, throngh the bladder, and throngh the bowels. It will be recollected from the first section of this book, p. 20, that the carbon in the blood of animals unites with the oxygen of the air drawn into the lungs, and is thrown off in the breath as carbonic acid. The hydrogen and oxygen unite to form a part of the water which constitutes the moisture of the breath.
"That portion of the atmospheric part of the hay which has been taken up by the blood of the ox, and which does not contain nitrogen, is emitted through the lungs. It consists, as will be recollected, of carbon, hydrogen, and oxygen, and these assume, in respiration, the form of carbonic acid and water.
"The atmospheric matter of the digested hay, in the blood, which does contain nitrogen, goes to the bladder, where it assumes the form of urea-a constituent of urine or liquid manure.
"We have now disposed of the imperfectly digested food (the dung), and of the atmospheric matter which was taken up by the blood. All that remains to be examined is the earthy matter in the blood, which would have become ashes if the lay had been burned. The readily soluble part of this earthy matter passes into the bladder, and forms the earthy parts of urine. The more insoluble part passes the bowels, in connection with the dung.
"If any of the food taken up by the blood is not returned as above stated, it goes to form fat, mascle, hair, bones, or some other part of the animal; and as he is not growing (not increasing in weight), an equivalent amount of the body of the animal goes to the manure to take the place of the part retained.*
"We now have our subject in a form"to be readily understood. We learn that when food is given to animals it is not put out of existence, but is merely changed in form; and that in the impurities of the breath we have a large portion of those parts of the food which plants obtain from dir and from water: while the solid and liquid excrements

[^10]contain all that was taken by the plants from the soil and from manures.
"The Solid Dung contains the undigested parts of the food, the more insoluble parts of the ash, and the nitrogenous matters which have escaped from the digestive organs.
"The Liqum Manure contains the nitrogenous parts of the digested food, and the soluble parts of the ash.
" The Breath contains those parts of the fully digested food which contain carbon, hydrogen, and oxygen, but no nitrogen, or at least a very inconsiderable quantity of it."

## LIQUID MANURE.

We believe there is no system of enriching the land for small gardens, with a view to perfection of crops, so truly economical and so easily available as that of using liquid manure. We occasionally hear of a gardener, or an amatemr grower of some special plant or crop, that has practised enriching with liquids, but it is only occasionally; yet the result of every record is in its favor, and a searching inquiry into any extra production of fruit, flower, or plant almost invariably gives watering with liquid manure as the canse. There is in almost every family a waste of liquids, which usually go into the sewer or drain, or possibly upon the road, where they are of no avail, but if saved by being conducted to a tank, would enrich the entire garden spot of vege-
tables, small fruits, furnish stimulus to the rose and other: flower bcrders, and keep the grass-plot green and fresh even in the hottest and driest weather of midsummer. The use of a little plaster (gypsum) occasionally, thrown in and around the tank, would always keep it sweet and clean. By the use and practice of liquid manuring no delay need ever occur in planting-time because of the manure not being on hand, or not being in a sufficiently rotted condition; but planting could proceed, and the application of manure be made at leisure.-Horticulturist.

Value of liquid manures.
The urine voided from a cow during one year contains 900 lbs. solid matter, and compared with Peruvian guano at $\$ 50$ per ton is worth $\$ 20$. It will manure $1 \frac{1}{4}$ acres of land, and is more valuable than its dung, in the ratio, by bulk, of 7 to 6 , and in intrinsic value as 2 to 1 .-Dana.

The Urine of the Cow contains of water. . . . . . . . . . . . . . . . . . . 92.6 per cent.


The remainder is composed of salts and rich food for vegetables.-Sprengel.

## Poudrette and Urate.

Poudrette is the name given to the human excrement after being mixed with charcoal dust or charred peat, to disinfect it of its effluvia, and when dried becomes convenient for use or transportation.

Urate is the name given to urine after mixing with it $\frac{1}{6}$ 15*
or $\frac{1}{7}$ of its weight of ground gypsum, and allowing it to stand several days. The urine combines with a portion of the ammonia, after which the liquid is poured off and the remainder dried.-Allen.

Analysis of night soil.
The excrement of a healthy man yielded in 1000 parts-

Water
Albumen
733. Mucilage, fat, and avimal matter. 167.

Bile.
9. Saline matters
12.
9. Uudecomposed food 70.

Man's urine yielded in 1000 parts-


Urea is a solid product of urine, and gives in 100 parts-
Carbon...................... 19.99 | Hydrogen..................... 6.65
Oxygen ........................ 26.63 | Nitrogen ........................ 4665
Prout.

## THE DRY EARTH SYSTEM.

It has long been a difficult problem to decide in what way to dispose of human excrement so as to make use of its invaluable ingredients as manure, and, at the same time, to avoid the offensiveness which attends its management in China and Japan, and in all countries where it is habitually applied to the soil.

This problem has at last found a satisfactory solution in the invention of the Rev. Henry Moule, Vicar of Fordington, Dorsetshire, England.

This invention is based on the power of common soil, when dried and sifted, to absorb, not only the moisture of human excrement, but its odor as well.

This power of absorbing odors is due to both the clay and the decomposed organic matter in the soil. It was first discovered, or at least first satisfactorily explained, by Prof. Way, chemist to the Royal Agricultural Society of England, whose interesting experiments on the subject are detailed in the Society's Journal.

It is odd that this easy means of arresting the offensive exhalations of human excrement was not long ago generally adopted. We have a practical illustration of this use of earth in the case of animals of the feline race, whose dejections are extremely offensive. They turn and carefully cover these with earth. In the adhesion of the world to many of the tenets of the Mosaic law, it is strange that we have overlooked the sound advice given in the 12 th and

13th verses of the xxiii. chap. of Deut., where we read, "Thou shalt have a place also without the camp whither thou shalt go forth abroad; and thou shalt have a paddle upon thy weapon ; and it shall be when thou shalt ease thyself abroad, thou shalt dig therewith and shalt turn back and cover that which cometh from thee."

Mr. Moule's invention is susceptible of many modifications. The apparatus which he has devised, and which is coming into quite general use in England, especially in detached country houses and cottages, where there is no supply of water for water-closets, consists of a hopper-shaped reservoir behind and above the ordinary water-closet seatf or holding the supply of dry earth,-this forms a back; a water-tight vessel or vault under the seat; and a mechanical arrangement for measuring out the proper quantity of earth (about a pint and a half) and throwing it forward upon the evacuation, which it entirely covers while it absorbs all the moisture.

This apparatus is simple, inexpensive, not liable to get out of order, and cannot be obstructed by frost.

A modification of the same, still more simple, cheap, and equally effective, though much less convenient, consists of a tub or box (filled with dry earth) at the side of the seat, and a common tin scoop with which to throw the earth upon the deposit. . This plan is being generally adopted in the prisons and workhouses of. England and the British colonies.

In fact, any vessel containing two inches or more of sifted, dry earth, and a second vessel containing a supply
of earth and a scoop or cup with which to handle it, will answer a good purpose on emergency, and will enable the poorest person not merely to mitigate but to absolutely overcome the most offensive accompaniment of sickness.*
While this invention offers relief from untold misery and annoyance to all who cannot conveniently establish waterclosets in their houses, its agricultural importance makes it especially interesting to farmers.

It is a fact too well known to need discussion in our limited space, that of all manures none are at once so powerful and so well adapted to the growth of all crops as "nightsoil," or human excrement, though its highly offensive character has generally prevented its use, and has associated with it an idea of degradation. In most parts of the country farm-liands wonld leave their places rather than to have anything to do with the stuff; and where it is commonly used, it is made a nuisance to wide neighborhoods.

By the aid of the dry earth system every real and fancied objection to its use is done away with. The mixed earth and "soil," when dried and pulverized, are absolutely without other smell than that of freshly turned earth; and, although every atom of fertilizing matter has been retained in a most available form, there is nothing by which, from either appearance or odor, its character could be suspected.

The most remarkable part of the whole matter is, that

[^11]when the ordure is once deeomposed and (by sifting) intimately mixed with the earth, it has the same quality as any other deeomposed organic matter, i.e., it acts as a deodorizer. Consequently, the same earth (by drying and sifting) may be used over and over again, always (at least up to the eighth or tenth time of using) being inodorous and as good a disinfectant as fresh earth; therefore the quantity of earth which it is necessary to prepare and store need not be very large, and it may be made so rich as to be equal to Peruvian guano in its effect on vegetation.

In short, in the opinion of the writer, who has had personal experience in the use of the apparatus, in "sickness and in liealth," the adoption of the dry earth system is "the coming reform."
$T_{\text {able }}$ showing the comparative increase of corn by different fertilizers.

|  | QUANTITY of rertiluzer. |  | 曾 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | No Manu | 28 |  |  |  |  |
|  | 500 lbs Superphesphate of Lime | 46 | 18 | 1250 | 1 | 14 |
|  | 3,690 '. Guano......... | $50 \frac{1}{2}$ | $22 \frac{1}{2}$ | 1900 | 1 | 6 |
|  | 300 "Superphosphate Lime \& 640 lbs. Guane | 58 | 30 | 2510 | 1 | 6 |
|  | 320 " Guane and 640 lbs. disselved Bones.. | 51 | 23 | 1840 | 1 | 8 |
|  | 1040" Guane \& 400 lbs . Superphosphate Lime | 749 | 463 | 3860 | 1 | 64 |
|  | 16 loads Stable Manure. | 351 |  | 1600 |  | 15 |
|  | 32 " ${ }^{\text {c }}$ | 423 |  | 3200 |  | 114 |
|  | 16 " ${ }^{\text {c }}$ \& 200 bus. leached Ashes. | 44 |  | $1260{ }^{\circ}$ |  | 2\% ${ }^{2}$ |
|  | 16 ". " \& 640 Ibs. Super P Lime.. | 491 | 142 | $1780^{\circ}$ |  | :8 |
|  | 32 " " \& 320 lbs Guano \& 1320 ils $\}$ |  |  |  | 1 |  |
|  |  | 43 |  | $\left\lvert\, \begin{array}{ll}1680 \\ 1620\end{array}\right.$ | 1 | 30 |

* Ouly the increase over the experiments 7 and 3 with stable manure alone.

All tables showing the comparative effect of different manures are of very problematical value. There are so many circumstances and conditions of soil, climate, exposure, moisture, previous treatment of the land, \&c., \&c.all of which affect, more or less strongly, the amount of the crop-that it is never possible (in the light of our still imperfect knowledge concerning the growth of plants, and their relations to the soii) to decide how far any increase or decrease may be due to the manure used, and how far to other causes.

Table, showing the effect produced upon the quantity of the crop by equal quantities of different manures applied to the same soil, sown with an equal quantity of the same seed.

| seed. | Return in bushels from each bushel of seed. |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Manure applied. | Wheat. | Barley. | Oats. | Rye. |
| Blood | 14 | 16 | $12 \frac{1}{2}$ | 14 |
| Night-soil. |  | 13 | 1411 | 131 $\frac{1}{2}$ |
| Sheep-dung. | 12 | 16 | 14 | 13 |
| Horse-dung | 10 | 13 | 14 | 11 |
| Pigeon-dung |  | 10 | 12 | 9. |
| Cow-dung | 7 | 11 | - 16 | 9 |
| Vegetable manure | 3 | 7 | 13 | 6 |
| Witlıont manure.. |  | 4 | 5 | 4 |

Moisture absorbed by different manures.
1000 parts horse-dung, dried in a temperature of $100^{\circ}$
Fahrenheit, absorbed by exposure to the air at a temperature of $62^{\circ}$ Fahrenheit, moisture, parts 145 1000 parts cow-dung, under same circumstances, " 130

1000 parts pig-dung, under the same circumstances,parts 120

|  | sheep-dung, " | " | " | 81 |
| :---: | :---: | :---: | :---: | :---: |
| " | pigeon-dung, " | " | " | 50 |
| " | rich alluvial soil, " | " | " | 14 |
| " | fresh tanners' bark, " | ${ }^{6}$ | " | 115 |
| " | putrified " " | 6 | " | 145 |
| 6 | refuse marine salt, " | " | '6 | 49 |
| " | soot, | 6 | 6 | 36 |
| " | burnt clay, | " | " | 29 |
| " | coal ashes, | " | 16 | 14 |
| " | lime, | " | ، | 11 |
| " | sediment from salt-pans, | ' | " | 10 |
| " | crushed rock-salt, | " | " | 10 |
| " | gypsum, | " | " | 9 |
| " | chalk, | " | " | 4 |

Table, showing the number of loads of manure and the number of heaps to each load required to each acre, the heaps at given distances apart.

|  | number of heaps in a load. |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 咅总 | 1 I | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| 3 | 538 | 269 | 179 | 134 | 108 | $89 \frac{1}{2}$ | 77 | 67 | 60 | 54 |
| 31 | 395 | 168 | 132 | 99 | 79 | $66^{2}$ | $56 \frac{1}{2}$ | $49 \frac{1}{2}$ | 44 | $39 \frac{1}{2}$ |
| 4 | 203 | 151 | 101 | $75 \frac{1}{2}$ | $60 \frac{1}{2}$ | 501 | 434 | 37 | $33 \frac{1}{2}$ | 304 |
| $4 \frac{1}{2}$ | 239 | 120 | $79 \frac{1}{2}$ | 60 | 47 | 393 | 34 | 30 | $26 \frac{1}{2}$ | 24 |
| 5 | 194 | 97 | $64 \frac{1}{2}$ | $48 \frac{1}{2}$ | $38{ }^{4}$ | 324 | 274 | 24 | 21. | 194 |
| $5 \frac{1}{2}$ | 160 | 80 | $53 \frac{1}{2}$ | 40 | 32 | $26 \frac{3}{4}$ | 224 | 20 | $17 \frac{1}{4}$ | 16 |
| 6 | 131 | 67 | $44 \frac{3}{4}$ | $33 \frac{1}{2}$ | 27 | $22 \frac{2}{2}$ | 194 | $16 \frac{3}{4}$ | 15 | $13 \frac{1}{3}$ |
| $6 \frac{1}{2}$ | 115 | $57 \frac{1}{2}$ | 384 | $28 \frac{3}{4}$ | 23 | 19 | 164 | 144 | 123 | $11 \frac{1}{2}$ |
| 7 | 99 | $49 \frac{1}{2}$ | 33 | $24 \frac{3}{4}$ | $19 \frac{}{4}$ | 161 | 14 | 124 | 11 | 10 |
| $7 \frac{1}{2}$ | 80 | 43 | 28. | 21. | 174 | 144 | 124 | $10 \frac{3}{}$ | $9 \frac{1}{2}$ | $8 \frac{1}{3}$ |
| 8 | $75{ }^{\frac{1}{2}}$ | $37 \frac{3}{4}$ | 25. | 19 | 15 | $12 \frac{1}{2}$ | $10 \frac{3}{4}$ | $9 \frac{9}{2}$ | $8 \frac{1}{2}$ | 72 |
| $8 \frac{1}{2}$ | 67 | $33 \frac{1}{2}$ | 224 | $16 \frac{3}{4}$ | $13 \frac{1}{2}$ | 119 | $9 \frac{1}{2}$ | $8 \frac{1}{2}$ | $7 \frac{1}{2}$ | ${ }_{6}{ }^{4}$ |
| 9 | 60 | 30 | 20 | 15 | 12 | 10 | $8 \frac{1}{2}$ | 7 | $6 \frac{3}{4}$ | 6 |
| $9 \frac{1}{2}$ | 531 | 263 | 18 | $13 \frac{1}{2}$ | $10 \frac{3}{4}$ | 9 | $7{ }^{\frac{3}{4}}$ | ${ }^{6 \frac{3}{4}}$ | 6 | 5 |
| 10 | $48 \frac{1}{2}$ | $24 \frac{1}{4}$ | 164 | 12 | 94 | 8 | 7 | 6 | $5 \frac{1}{2}$ | 43 |

Explanation.-In the left hand column are placed the distances of the rows and the heaps in each row (i.e., the distances between the heaps in each direction), and at the top of the columns will be noticed the number of heaps inteuded to be made of each load; the point where the two meet gives the number of loads per acre which will be required for that purpose.

Example 1.-Required the number of loads necessary to manure an acre, dividing each load into six heaps, and placing them $4 \frac{1}{2}$ yards apart?

Solution.-In the left hand column find $4 \frac{1}{2}$ (the distance of the heaps apart), and opposite it to the right, under 6 (the number of heaps in each load), will be found 393. Ans.

Example 2.-A farmer has a field containing $5 \frac{1}{2}$ acres, over which he wishes to spread 82 loads of manure. Now, 82 divided by $5 \frac{1}{2}$ gives 15 loads per acre, and by referring to the table it will be seen that the desired object can be attained by making 4 heaps of each load, and placing them 9 yards apart, or by 9 heaps at 6 yards apart, as may be thought most advisable.

Notes.-A cubic foot of halfrotten stable manure will. weigh 56 lbs. ; if coarse or dry, 48 lbs.

A load of manure is abont 36 cubic feet, and of the first quality will weigh 2016 lbs ; of the second, 1728 lbs.

Eight loads of the first kind spread over an acre will give

108 lbs. to each square rod, and about $3 \frac{1}{2}$ lbs. to each square yard.

Five loads will give 63 lbs. to each square rod.
To find the number of loads of manure required to the acre, for a given number of lbs. per square foot.

Rule.-Multiply 43560 (the number of square feet in an acre) by the number of lbs. you wish to spread on each square foot, and divide the product by 2016 , and the quotient will be the number of loads required.

Example.-Required, the number of loads of manure to cover a 2 -acre field, giving 2 lbs . of manure to each square foot?

SoLUTION. $-43560 \times 2 \times 2=174240 \div 2016=86.4$ loads. Ans.

## ARTIFICIIAL MANURES.

It is a self-evident truth that if we sell, we must buy, or we must be content to see our stock on hand reduced.

This principle applies nowhere else with more force than to the stock of mineral plant-food in the soil. This is, after all, our "stock in trade"-ammonia, carbonic acid, and wn-ter;-the sources of nearly ninety-nine-hundredths of our crops we can draw from the floating capital of the world, and, except in the case of ammonia, we need give ourselves but little trouble about them. With the mineral matters, however, the case is very different. Some of them, it is true,
are so abundant and so universally distributed that they do not demand much attention ; but some others, on the other hand, have been distributed by nature with so sparing a hand, that our constant care shonld be given to keeping our supply of them undiminished. They exist only in the soil; the winds cannot waft them to us, nor do they come, as ammonia does, in every summer 'shower. They are the hard currency of our banking system, and our business will always be limited by the amount we have in our vaults, and by the promptness with which we make goode their loss when we have put them in circulation.

This fact has created a demand for artificial manures, the theory of whose production is, that the phosphate of lime which has found its way into the bones of animals, and has thus become, for the moment, unavailable to the farmer, shall be returned by some process which shall convert refnse bones into manure, or that it shall be replaced from some other source, as from the phosphatic guanos from which superphosphate of lime is largely made; and that potash, lime, \&c., shall be collected, in the form of ashes, \&c., \&c., and returned to the soil.
If all the artificial manures that have been put into the market had been honestly made, the demand for them would have been much greater even than it now is.
But the fact that their composition can be ascertained only by careful chemical analysis, which farmers are incompetent to malke, has led to no end of fraud, and one never
knows, in purchasing a ton of superphosphate, poudrette, guano, \&c., whether he is or is not paying for half a ton of coal-ashes or other worthless dirt. The consequence of this has been that many farmers have bought a little superphosphate as an experiment, have found no beneficial result from its use, and so have given it up as a bad job and pronounced the whole system of artificial manuring a swindle. The example of each man has had its effect on his neighbors, and there is, consequently, a wide-spread belief that all artificial manures are humbugs.

At the same time, there are so many who do fully understand the value of these fertilizers, and whose land absolutely needs their aid, that the manufacture and sale of such as are of established good quality has reached enormous proportions.

On farms where large stocks of cattle are fed, and for lands which are enriched by the raising of clover as a green crop, the neccssity for the use of foreign manures is much less than where the crops are mainly sold off, and no recuperative process (such as the use of green crops) is adopted.

There is, in all fertile lands, a large reserve stock of mineral plant-food which is not yet in a proper condition to be taken up by roots, and if the cropping is not too severethe produce being mainly consumed at home, and the manure economically used, or the frequent use of green crop manuring being resorted to-the gradual development, in an available form, of these mineral matters will maintain
the land in a fair state of fertility for a very long: time, and here the use of mineral manures is less obvious than in other cases.

It is a fallacy, however, to suppose that these lands do not need mineral manuring. By the system pursued, we are simply drawing on the capital stock, and, sooner or later, we shall touch bottom. It all looks fair enough now, but at some future day we or our successors must pay the penalty of our improvidence by finding that the land will no longer produce good crops without the use of more purchased manure than can profitably be applied to them.

The only safe rule (the only honest course, wien we consider the fact that we are only life-tenants of our farms, and are in duty bound to leave them, unimpaired if not improved, to those who are to come after us) is to bring back on to the farm, every year, as much of the more valuable elements of vegetable ashes as we have sold off from it, whether in meat milk, grain, or hay. In this way only can we be sure that our land and our crops will each year improve.

The great deficiency of our older soils is in the items of phosphoric acid and potash. (Lime is more often needed as an agent for the development of matters already contained in the soil than as a direct food for plants.)

While ammonia has been classed among the non-essential elements of manure, its action as a stimulant is so remarkable that it is, commercially considered, the most valuablt of all.

Professor S. W. Johnson of the Sheffield Scientific School, Yale College-the highest authority in America-gives the following as the analysis of the best Superphosphate of Lime that ever came under-his examination:-

> Analysis of Mapes' Improved Superphosphate of Lime. Manufacture of 1852.

Water................................................ 4.54
Organic and volatile matter........................ 22.96
Sand and matters insoluble in acids............... 1.48
Soluble phosphoric acid............................ 10.65
Insoluble " "........................... 10.17
Ammonia......................................... 2.78
Phosphate of lime equivalent to phosphoric acid.... 45.11
The following is also from Johnson:-
Analysis of Coe's Superphosphate. Manufacture of 1856.
Water, organic and volatile matters............... 38.02
Sand and matters insoluble in acids................ 3.37
Soluble phosphoric acid............................ 3.84
Insoluble " "............................ 17.84
Ammonia......................................... 3.04
Phosphate of lime, equivalent to phosphoric acid... 46.47
Johnson also gives the following analysis of bone-ash, or the residue of burnt bones :-

> Analysis of Deburg's Bone Meal.

Water............................................ 3.04
Organic and volatile matters, mostly charcoal....... 2.07
Sand and insoluble matters........................ 11.19
ARTIFICLAL MANURES. ..... 359
Lime ..... 42.17
Phosphoric Acid ..... 35.42
Carbonic ..... 1.23
Magnesia and sulphuric acid, with undetermined matters ..... 4.88
100.00
Also the following:-
Analysis of Bone Dust.
Water ..... 8.75
Organic matter ..... 27.25
Sanc ..... 5.37
Earthy phosphates. ..... 45.32
Carbonate of lime and loss ..... 13.31
100.00
Ammonia ..... 2.98Also the following:-
Analysis of Fish Guano, or the refuse of Fish Oil Worles.
Water ..... 9.67
Organic (animal) matter ..... 67.78
Sand ..... 2.05
Lime ..... 3.76
Soluble phosphoric acid ..... 3.38
Insoluble " " ..... 81
Ammonia yielded by animal matter. ..... 8.36
Purchasers of manures will find the following table-taken
from Judd's Agricultural Annual for 1868-of great value, as affording a good general guide in determining the value of manure by the use of an analysis :-

Prices of Standard Fertilizers, and a Standard for Prices.

The prices of some of the standard fertilizers offered in the New York market simply as such, in December, 1867, are as follows:-

Peruvian Guano, in quantities of 50 tons, per long ton, (gold). ...... $\$ 60.00$
do do in smaller quantities the price varies with the premium on gold; with gold at 35 per cent. prom., per 2000 lbs........ 85.00
Baker's or Jarvis' Island Guano-a phosphatic Guano from the S. Pacific Ocean, which should contain equivalent to 60 to 70 per cent. of bone phosphate of limo; per 2000 lbs
45.00

Superphosphate of lime, per $2000 \mathrm{lbs} . . . . .$. ......................... 55.00
Bone, fine ground, in 250 lb . bbls., per 2000 lbs...................... . . . . 45.00
Flour of bone, per 2000 lbs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60.00
Fine floated bone, per 2000 lbs. .......................................... . . . . 65.00
Fish manure, dry and finely ground, per 2000 lbs.. .................. 45.00
do unground, per 2000 lbs.................................. 30.00
Gypsum or plaster, sold in quantities of 7 bbls., per bbl. ( 250 lbs )... $\quad 1.75$
Shell lime, in bulk, per bushel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
do per bbl..................................................... 1.50
Sulphuric acid of 66 degrees, (oil of vitriol) per lb.................... $\quad{ }_{2}^{4} \mathrm{C}$ c.
do do of 60 degrees, (pan acid).................................. 24 c.
Carboys containing about 150 lbs . of this acid cost $\$ 3$ each, and may be returned when empty.

The following table was prepared by John B. Laws, of Rothampstead, England. The money values of the manure. resulting from feeding the several substances are based on
the English（gold）prices of manure；they would be consi－ derably higher here，but this does not affect their relative value．
Average Composition，per cent．and per ton，of various kinds of Agricultural Produce，dec．

|  | PER CENT． |  |  |  | Liss．PER（LONG）TON． |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\pm$ |  |  |  | $\begin{aligned} & \text { 总 } \\ & \text { 坒 } \\ & \text { 荧 } \\ & \hline \end{aligned}$ |  |  |  | $\begin{aligned} & \text { 荘 } \\ & \text { Hiँ } \\ & \text { H } \end{aligned}$ | 畐 0 B 劳 |  |
| 1．Linseed cake． | 88.07 .00 | 4.92 | 1.65 | 4.75 | 1，971 | 156.8 | 110.2 | 0 | 106.4 | 9．72 |
| 2．Cotton－seed ca | 89.08 .00 | 7.00 | 3.12 | 6.50 | 1，994 | 179.2 | 156.8 | 70.0 | 145.6 | 86 |
| 3．Rape cake | 80.08 .00 | 5． 75 | 1.76 | 5.00 | 1，994 | 179.2 | 128.8 | 30.4 | 112.0 | 1.01 |
| 4．Linseed．． | 90.04 .00 | 3.88 | 1.85 | 3.80 | 2，016 | 89.6 | 75.7 | 20.7 | 85.1 | 15.65 |
| 5．Beans | 84.03 .00 | 2.20 | 1.24 | 4.00 | 1，882 | 67.2 | 49.3 | 28.4 | 89.6 | 15.75 |
| 6．Peas | 84.52 .40 | 1.84 | 0，96 | 3.40 | 1，803 | 53.8 | 41.2 | 21.5 | 76.2 | 13.38 |
| 7，Tares． | 84.02 .00 | 1.63 | 0.66 | 4.20 | 1，892 | 44.8 | 26.5 | 14.8 | 04.1 | 16.75 |
| 8．Lentils | 88.03 .00 | 1.89 | 0.96 | 4.80 | 1，971 | 67.2 | 42.3 | 21.5 | 96，3 | 16．51 |
| 0．Malt dust | 94.08 .50 | 5.23 | 2.12 | 4.20 | 2，106 | 190.4 | 117.1 | 47.5 | 94.1 | 18.21 |
| 10．Locust bean | 85.01 .75 |  |  | 1.25 | 1，904 | 39.2 |  |  | 28.0 | 4.81 |
| 11．Indian me | 88.01 .20 | 1.13 | 0.35 | 1.80 | 1，971 | 29.1 | 25.3 | 7.8 | 40.3 | 6.65 |
| 12．Wheat．． | 85.01 .70 | 1.87 | 0.50 | 1.80 | 1，904 | 38.1 | 42.0 |  | 40.5 | 7.08 |
| 13．Barley | 84.02 .20 | 1.85 | 0.55 | 1.65 | 1，882 | 49.3 | 30.2 | 12.3 | 37.0 | 6． 22 |
| 14．Malt． | 95.02 .60 | 1.60 | 0，65 | 1.70 | 2，128 | 58.2 | 85.8 |  | 28.1 | 6.65 |
| 15．Oats | 86.02 .85 | 1.17 | 0.50 | 2.00 | 1，420 | 63.8 | 26.2 | 11.2 | 44.8 | 7.70 |
| 16．Fine pollard | 86.05 .60 | 6.44 | 1.40 | 2.60 | 1，926 | 125.4 | 144.2 | 32.7 | 58.2 | 13.53 |
| 17．Coarse pollar | 86.06 .20 | 7.52 | 1.49 | 2.58 | 1，326 | 188.0 | 168.4 | 83.4 | 57.8 | 14.86 |
| 18．Wheat bran | 86．0 6.60 | 7.05 | 1.45 | 2.55 | 1，120 | 147.8 | 178.1 | 32.5 | 57.1 | 14.59 |
| 19．Clover hay | 84.07 .50 | 1.25 | 1.80 | 2.50 | 1，882 | 168.0 | 28.0 | 20.1 | 50.0 | 9.64 |
| 20．Meadow hay | 84.06 .00 | 0.88 | 1.50 | 1.50 | 1，882 | 134.4 |  | 33.6 | 33.6 | 6.43 |
| 21．Bean straw．． | 82.5 5．55 | 0.90 | 1.11 | 0.00 | 1，848 | 124.3 |  |  | 20.2 | 3.87 |
| 22．Pea straw． | 82.0 5． 95 | 0.85 | 0.89 |  | 1，837 | 183.3 |  |  | 20.2 | 3.74 |
| 23．Wheat strav | 84.05 .00 | 0.55 | 0.65 | 0.60 | 1，882 | 112.0 | 12.3 |  | 13.4 | 2． 68 |
| 24．Barley straw | 85.04 .50 | 0.37 | 0.63 | 0.50 | 1，904 | 100.8 | 8.3 | 14.1 | 11.2 | ${ }_{2}^{2} 28$ |
| 25．Oat straw． | 83.05 .50 | 0.48 | $\begin{gathered} 0.98 \mid \\ 0.95 \end{gathered}$ | 0.60 | 1，859 | 123.2 | 10.7 |  | 13.4 | 2.10 1.07 |
| 26．Mangel wurzel． | 12.51 .00 | 0.09 | $\left\|\begin{array}{l} 0.25 \\ 0.18 \end{array}\right\|$ | 0.25 | 280 | 22.4 | 2.0 | 5.6 | 5.6 | 1.07 |
| £7．Swedish turnips | 11.00 .68 | 0.13 | $\begin{aligned} & 0.18 \\ & 0 \end{aligned}$ | 0.22 | 246 | 13.4 | 2.9 | 4.0 | 4.6 | 0.91 0.86 |
| 28．Common turnip | 8.00 .68 | 0.11 | 0.29 | 0.18 | 179 | 15.2 | 2.5 | 6.5 | 4.0 | 0.86 |
| 2．9．Potatoes． | 24.01 .0 | 0.22 | 0.43 | 0．35 | 537 | 22.4 | 7.2 | 9.6 | 7.8 | 1．80 |
| P．0．Carrots | 13.50 .70 | （．13 | 0.23 | 0.20 | 302 | 15.8 | 2.9 | 5.1 | 4.5 | 0.60 |
| 31．Parsnips | 15.01 .00 | 0.42 | 0.86 | 0221 | 626 | 22.4 | 9.4 | 8.1 | 4.9 | 1.14 |

[^12]
## TILE DRAINING.

I have preferred to head this article as I have, rather than to say simply "draining" or " nder-draining," because I believe in the use of tiles under all circumstances when it is possible to procure them, and because the making of stone drains is understood by every farmer who lives in a region that is blessed with wet land and stone.

At the same time, I would not be thought to undervalue the usefulness of stone drains. Neither the stone nor the tile has any influence, in itself, on the fertility of the soil. Any material by the use of which we can make a passageway through the soil will make a perfectly good drain, as long as it keeps the passage open.

The question is to be decided simply by the consideration of cost and durability'; and here the tiles have an immense advantage.
In the first place, they are very much cheaper than stone; and in the second, the drain which they make is very much more likely to be permanent.

It will, I am aware, strike many farmers whose land is encumbered with stones, as a singular proposition that it is cheaper to pay twenty-five or thirty dollars per acre for tiles, when there are stones on the place that it would be an advantage to get rid of But it is a fact, nevertheless. The
cost of collecting the stones, of breaking (or selecting them) to a proper size, of laying them in the drain, and of protecting them from the rattling down of loose dirt among them, and from the burrowing down of field-mice, is very great, and in addition to this we have to calculate the cost of digging the very much wider ditch that is required for their use.

To drain land in the best manner there are required about sixty rods of drain four feet deep, and fifty cents a rod for the above items (which is the utmost that tile should cost) would not pay one-half of the actual cost of stones, if we calculate the labor of teams and men at anything approaehing their full value.

As to durability. A tile drain, when properly laid, is packed closely in the most compact subsoil within our reach, has its joints (which are very close) encased in an earthen collar, is closed at its upper end by a flat stone against the tile, and its outlet secured by a grating. No dirt ean get in to stop it up, and no vermin can use it for a camping ground. The only thing (except in rare instances the roots of trees) that can enter it at all is the water that it is intended to carry away.

Of course I speak of a tile drain that is made of good materials and is made in a proper manner. It is very easy to make a drain that will not be worth the cost of the tiles, not worth anything; and many such drains are made by careless or ignorant people, who, seeing their uselessness,
are loud in the praise of stone drains, and never want to see another draining tile so long as they live.

A good tile-drain, made of good clay and well burnt, properly laid on a uniform descent, and having a good outlet, is practically as permanent as the earth in which it is imbedded.

And now, how to make such a drain. It would take much more than the few pages that can be here devoted to the subject to tell. All that my space will allow me to do is to give a few general rules and directions, which will suffice to enable a farmer to understandingly decide for himself whether he will make his drains of stones or of tiles; and a few arguments which may convince lim that he cannot afford to let his wet land go undrained.

The draining tile is made in several forms, known as the " round,", the "sole," and the "horse-shoe." The last mentioned represents the first step that was taken in advance of the use of stones, and it has long been condemned as an inferior article by all who have had experience in the use of the other kinds. The sole-tile, which has an egg-shaped orifice, and has a flat side to lie upon, is theoretically very good, and is really very good, only not the best. The flat side is a delusion, for the reason that it generally is not flat, being very liable to be warped out of shape in the burning, while the uneven drying of the clay before it is burnt, or the friction of the die through which it is moulded, is very apt to so distort its shape as to make it difficult to make a good joint.

The round tile, if well made, is much better, is practically perfect. A tile does not need a flat side to lie upon, for in nine cases out of ten the bottom of the ditch is not flat, and as soon as each piece is put in its place, and while it is held there by the tile-layer, a second man covers it sufficiently to hold it firmly. The sunaller sizes have collars or rings to fit them, and these keep the joints "in line" and prevent loose dirt from rattling into the wider openings. • Another great advantage of the round tiles is that, if they don't fit each other as they are first laid, they can be turned over until the slight inequalities of the two ends will correspond.

All of the larger tile makers now make the round tiles, and most of them make them very well. A machine invented by Mr. Tiffany (of the Crosmann Clay and Manufacturing Company, Woodbridge, New Jersey) moulds the tiles more smoothly, and presses them harder, than any other yet brought into use. Mr. C. W. Boynton, of Woodbridge, however, seems to have brought more real talent to the manufacture of tiles than any one else who has undertaken the business, and his pipes are probably the best now made, inasmuch as they are two feet long-twice the usual length-and are supplied with connecting pieces for admitting lateral drains into the main trunk lines. Heretofore it has been the custom to pick a hole in the side of the tile of the main drain, and to bring the end of the lateral against it, closing the irregular openings by covering them with bits of broken tile or small stones; and it was nice work to
avoid breaking the pipe, and at the same time to make the joint so accurately as to neither retard the flow nor to admit earth from the filling.

Boynton's pipes, which are shown in the accompanying cuts, have a branch piece nicely fitted to the side of the pipe that is to form a part of the main, the branch forming a part of the lateral. On the end of this branch a collar may be placed to receive the end of the lateral, making as good a joint at the junction as at any other part of the drain.

Before this improvement was made, it was often necessary, where a tile came into the main, to make a silt-basin to catch any silt that might be deposited by the more sluggish flow of the water at that point. By its aid these siltbasins may be, in nearly all cases, dispensed with, as the lateral enters in an oblique direction, and the velocity of its flow will be imparted to that of the main.


Fig. 8.
Fig. 1 shows the round tile; Fig. 2, the collar ; Fig. 3, the manner of laying these ; Fig. 4, the connecting joint of the
main with a branch to receive the lateral; and Fig. 5 the


FIG. 4.
manner of laying the tiles at the junction of a lateral drain with the main.


Fig. 5.
Rules to be observed in making Tile Drains:-

1. Every drain (mnless there is some special reason to the contrary) should run directly down the steepest descent of the land-not obliquely, but straight down the hill.
2. Wherever possible, the drains should be fonr feet deep, especially when the subsoil is a stiff clay hard-pan.
3. When the drains are four feet deep, they should be forty feet apart. If only three feet deep, they should be only twenty feet apart; and if more than four feet, they may safely be placed at greater distances than forty feet.
4. The rate of fall or inclination of a drain should not decrease as it approaches the outlet. It may be increased as much as is convenient. The rule is, to keep the water running faster and faster, rather than slower and slower, as it gets on in the drain.
5. The outlet should always be clear and free--never, if it can possibly be avoided, so arranged as to be obstructed by mud or dead water.
6. The tiles should have no porous material of any kind over them, but should be imbedded (and firmly packed) in the closest clay that is accessible.
7. In digging the ditch, always commence at the lower end and work toward the top ; in laying the tiles, commence at the upper end, and continue toward the outlet.
8. Never have tiles laid by the piece (or rod), but always by the day, and by the most faithful and careful man that can be found; if possible, do it yourself, and remember that the golden rule of draining is that, as the weakest link of a chain is the measure of its strength, so is the worst laid tile of a drain the measure of its goodness.*

If the drains are laid at distances of forty feet it will take just about one thousand feet of tiles to drain an acre.

As to the sizes of tiles required, it will make a difference whether the fall is rapid or slight; but under all ordinary circumstances, where there are no springs to be disposed of, only the natural drainage of the land itself (its accumnlated

[^13]rain-fall), the first 1500 feet in length, whether it be a single drain or several laterals, may be made of the smallest sized tiles ( $1 \frac{1}{2}$ ineh). Beyond this amount and up to 5000 feet, 2 -inch tiles will suffice. From 5000 to 10,000 feet use 3inch, and from 10,000 to 20,000 feet use 4 -inch.

These sizes would not suffice for the immediate removal of all the water of a very heavy rain-fall, but it is to be remembered that before the water can get to the tiles it must filter slowly through four fect of soil, and conld reach the drain but slowly, were it ever so large. Then again, it is not important that the water of a heavy rain be removed within an hour of its falling; it does no harm to have it settle slowly away, so long as it really does settle away, and does not stand to be evaporated from the surface, nor to flow off over it; and it is desirable that the drains should occasionally run "more than full," so that a strong flow of water may wash out any obstructions that may have accumulated in them.

The question should not be so much how large a tile is necessary to carry the water, as how large a tile will the water (after heavy rains) be able to flush and keep clean.

In the foregoing, I have simply stated rules and principles which have been proven by long experience to be correct. The evidences of their truth and reliability, and the arguments on which they are founded, could not be set forth in the limited space which has been allowed for the subject in this book. The object here is to set forth rules and to give


Fig. 6.

Tools used in laying drain tile.
directions. Those who are desirous of investigating reasons will find them stated in other works which are devoted to the fuller discussion of the various topies here touched upon.

The ditches are usually dug, in this country, with the ordinary pick, spade, and sloovel, with the single addition of a narrow scoop to work in the narrow bottoms of the drains. Such a scoop may be made by cutting a common, roundpointed, long-handled shovel down to a width of four orfive inches.

In Europe, where much more extensive operations of drainage are carried on than are known in this country, sets of tools especially adapted for all the different operations are used. One set of these is slown in Fig. 6.


Fig. $\%$.
The position of the workman in cutting a narrow ditch
for a tile, or rather in finishing the bottom of the ditch with the scoop, is shown in Fig. 7.


Fig. 8.
The manner of securing the ontlet so as to keep out ver-


Fig. 9.
min, and, at the same time, to prevent the earth from caving in about the end of the drain, is shown in Fig. 8.

The manner in which draining tiles are moulded from moist clay may be learned from Fig. 9, which represents a strong wooden box filled with clay, which, by the pressure of a lever, is forced out through loles which have the shape of the outside of the tile. A plug stands in the middle of each loole (supported from within, so that the clay can entirely surround it as it comes out), which makes the bore of the tile.

## WHY SHOULD LAND BE DRAINED?

There is one condition of soil that is the most farorable for the growth of nearly all agricultural plants-that is a condition of prousness, moisture, warmth, and aëration. The roots of plants need to be, in a dark place, to be surrounded by moisture (this is very different from being soaked in water), and to be sufficiently supplied with air.

There are other conditions of fertility, suel as, richness in plant-food, \&c., which, although of the utmost importance, are apart from our present subject. What we have now to do with is the mechanical state of the soil, as distinguished from its chemical composition and aetion-that is to say, with its moisture, its temperature, the ease with which roots can penetrate it in search of nutriment, and the opportunity for the admission of atmospheric air to their vicinity.

The effects of drainage on the chemical constitation of the soil, and on the chemical action of its ingredients as
affecting vegetation, is very great; but it is not necessary to the strength of the argument that they should be detailed here, and their sufficient.discussion would require too much space.

## Moisture.

By the moisture of the soil we mean a condition resembling that of a sponge which has been dipped in water and then lifted out and allowed to drain. While in the water it was saturated-that is, all of its pores were filled with water-but on being removed the water all runs out from its pores, except the small amount that adheres (by capillary attraction) to its substance.

In like manner the undrained soil, after a heavy rain, is saturated. All of the spaces between its particles are filled with water. After draining, this water all passes away, except the small amount which adheres to the surfaces of the particles, and that which fills the more minute pores of these particles. There is enough water in the soil in this condition to supply the demands of plants; but there is not -as there was before draining-so much as to interfere with their healthy growth.

Not the least beneficial effeet of draining is that which is the result of the admission of air to its lower and cooler parts, causing a deposit of moisture in dry weather, which is sufficient to supply the needs of vegetation, and to greatly mitigate, if it does not even entirely overcome, the effects of drought.

That land should be made damper by being made more dry, that under-draining should be one of the best preventives of the ill effects of drought-this is the apparently anomalous proposition on which one of the strongest arguments in favor of draining is based.

When we see a field baked to the consistence of a brick, gaping open in wide cracks, and covered with a stunted growth of parched and thirsty plants, it seems hard to be-" lieve that the simple laying of hollow tiles, four feet deep, in the dried-up mass, would do anything at all toward the improvement of its condition; for the present season it would not, but for the next it would, and for every season thereafter, and in increasing degree, so long as the tiles continued to act as effective drainage.

The baking and cracking, and the unfertile condition of the soil are the result of a previous condition of entire saturation. Clay cannot be moulded into bricks, nor can it be dried into lumps unless it is first made soaking wet. Dry, or only damp clay, once made fine, can never again be made lumpy, unless it is first made thoroughly wet, and is pressed together while in its wet condition. Neither can a considerable heap of pulverized clay, kept covered from the rain, but exposed to the sun and air, ever become even apparently dry, except within a few inches of its surface. After under-draining has had time to bring the soil, to a depth of two or three feet, to a thoroughly drained condition, it will equally prevent it from being baked into lumps, or
from becoming, for any considerable depth below the surface, too dry for the purposes of vegetation. In the first place, the water of heavy spring rains, instead of lying soaking in the soil until the rapid drying of summer bakes it into coherent lumps, settlcs away and leaves the clay, within a few hours after the rain ceases, and before rapid evaporation commences, too much dried to crack into lumps.

The other direct effect of under-draining is to remove from below, water which, if not so removed, would be evaporated from the surface.

The formation of a crust on the surface of the ground is in direct proportion to the quantity of water that is removed by evaporation, and the crust constitutes a barrier against the admission of air. Consequently the larger the quantity of water that is removed by the drains, the smaller is the obstacle offered to the entrance of air. The more constantly the lower parts of the soil are relieved from excess of water and supplied with air, the more deeply will roots descend; and the more frequently will the air in the lower soil be changed, the easier its communication with the atmosphere.

On these two principles depends the immunity from drought which under-draining helps us to secure. In dry weather the soil gets its moisture from the deposit of dew, on the surface during the night, and on the surfaces of the particles of the lower soil constantly, day and night.

## Temperature.

The temperature of the soil is a matter of the utmostconsequence. Seeds cannot germinate, and plants cannot grow without there being a certain amount of heat in the soil, and there is no means by which this heat is so much and so constantly reduced as by the evaporation of water from its surface. In proportion as we remove by the means of under-draining the water which would, if not so removed, remain to be evaporated, we allow the soil to attain a higher temperature, and so to become more productive.

The penetration of roots.
In a soil that is usually too wet, the roots of plants confine their operations to the few inches of dry soil at the surface, as they will not push into a cold, compact, wet subsoil. Draining removes the water from the subsoil, allows it to become sweet and warm and loose, and fit for the entrance of roots, which are thereby enabled to seek farther for a greater quantity and a greater variety of food.

The circulation of air.
Atmospheric air, if not absolutely necessary to the life and action of the roots of plants, greatly favors their growth and their absorption of food. Aside from its direct supply of carbonic acid to the feeding parts of the roots, it brings moisture to the soil by which they are surrounded, and aids in preparing its nutrient constituents for assimilation.

## ROTATION OF CROPS.

The experience of practical farmers very early demon. strated the necessity for adopting a system of changes in the crops grown on the same soil. Thus, we find in the writings of Columella, Varro, Theophrastus, and others who in ancient times wrote on the subject of agriculture, distinct rules laid down as to the course of coltivation to be pursued in order to prevent the exhaustion of the soil, or, rather, to prevent it from failing to produce a particular crop so long as it was fertile for anything, and to enable it to make full use of whatever manures were applied to it.

In more modern times, the reasons why rotations are necessary have been, in a measure, explained by the aid of chemistry; but we have not materially improved on the practice of those who cultivated the soil 2000 years ago.
The various crops appropriate different elements from the soil, or the same elements in different proportions. Of course, by raising the same crop year after year from the same field, its quantity and quality not only yearly deteriorate, but the soil becomes exhansted of the special ingredients which go to support the growth of that particular product, while it accumulates the elements especially adapted to some other crop.

The principle on which rotations are based may be readily understood from the following illustration :-

What are known as the root crops contain, in their ashes, a very large proportion of potash. The average amount of this substance contained in the ash of potatoes, turnips, beets, and carrots, is fully fifty per cent. of the whole; that is, they contain as much of this single ingredient as of all the other mineral ingredients combined. Wheat, rye, oats, and barley, on the other hand, contain an average of only twenty-five per cent., or only one-half as much of this as of all the other ingredients.

If we examine their content of phosphoric acid, however: we shall find the case quite different. For instance, the four root crops above named contain an average of only about thirteen per cent. of this element, while the four grain crops contain an average of abont thirty-seven per cent.

Again, lime forms but about three per cent. of the ash of most root crops, while it exists in clover and most of the fodder plants to the extent of about thirty-five per cent. of their ash.

If we were to follow through the whole range of the mineral constituents of our crops, we should find similar variations in the amounts appropriated by the different plants which are commonly grown on our fields.

Now, suppose that on a field of average quality we find that wheat or some other grain grows to advantage. Stimu-
lated by the profits of the cultivation of this grain, we continue to grow it year after year, without intermission. The result is that-sooner or later, often within two or three years-we find the yield steadily diminishing. One reason for this is that we have been constantly robbing the soil of undue amounts of phosphoric acid, and (without rendering it unfertile for some other crops, such as potatoes) we have seriously impaired its capacity for the production of wheat. If, instead of raising wheat the second year, we had raised potatoes, or clover, or some plant of an entirely different character from wheat, we should liave drawn more evenly on all of the resources of the land, and should have postponed the exhaustion of its stock of available phosphoric acid.

Here then comes in play, also, another element which it is necessary for the farmer to consider, uamely:--there are constantly going ou in the soil (which may be considered a natural chemical laboratory) certain chemical and mechanical processes, whose effect is to continually set free from other combinations and prepare for the use of plants the various minerals which constitute their ashes. Therefore, if we bring a grain crop into the rotation only once in four, five, or six years, the simple action of these processes will, in the intervening time, set free enough phosphoric acid for a second crop. Soils differ, not only in their composition, but in the rapidity with which their elements are set free; consequently we find some soils on which the same crop may
safely be tried every second or third year, and others on which we must allow a much longer interval.

The same rule that applies to the soil holds good also with regard to manures. These almost always contain various matters which go to feed plants, and we must study to so arrange our crops as to make profitable use of all that they can yield; and, if they are of a sort to need time and the action of the chemical and mechanical influence of the atmosphere and of the soil for the complete development of all of their constituents, we must adjust our crops, so far as possible, to take up these constituents as they are prepared for use.

The foregoing is the basis of the chemical theory of rotations.

In addition to this, we must consider the influence exerted on the soil by the roots which are left in the ground when the crop is removed. This element of the influence which plants exert on plants which are to follow them in the same soil is especially important in the case of clover, which is so active in its fertilizing effect, that it may be assumed that we have overcome our great difficulty in bringing up a poor soil when we have enabled it to grow a good crop of clover. One especial virtue of this plant is that it sends its roots far into the subsoil, and thus appropriates, by means of its vigorous feeding powers, useful materials which were out of the reach of the roots of plants of other species. These materials are deposited in the substance of the plant, and (on its decay
when ploughed in, or on the decay of its roots when these alone are left in the soil) they are presented to the new crop in a most acceptable form. The raising of other green crops to be ploughed in for manure, is advantageons for the same reasons.

Two most valuable accessions to the rotation of crops will be found in the root crops, and in green forage crops to be either cured for winter use or fed to animals kept on the "soiling" system. To these crops the richest animal manures may be profitably applied, and, while they will make a most luxuriant growth, they will "draw the fire" of the manure, and leave the land in the best condition for the growth of grain crops.

Copeland says:* "When it was discovered that roots of all kinds were not only good food, but the best food for cattle, those farmers who believed in the discovery cultivated roots, and found, not only that their value as food was inestimable, but that, with a given expenditure in manure and labor, roots gave a larger return in value than any other crop. This was the turning point, the rising tide-wave of improving agriculture. The new crop was an improvement in every respect. It restored fertility better than the fallow, gave an immense amount of fodder, and inswed a corresponding increase in manure, from the greater number of cattle which could be fed from the farm.
"Under theold system-the same pursued in New Eng-

[^14]land at the present day-there was a large and a small white crop, one large yield of hay, then smaller and smaller, then good pasture, then poor. This rotation gave a change from better to worse. The new practice demonstrated that there need be no "worse." It showed that a root crop shonld follow the sod and should be followed by grain; that again by grain or grass and clover; that by pasture and roots. At first it was made a point that a white crop should never be taken two years in snccession, and after going through roots and grass it was found, on returning to the white crop, that the ground was so much richer than before, that a number of bushels was taken previously unheard of in the neighborhood."

Licbig says:* "The succession of crops in rotation is always made dependent upon the cereals; the preceding crops are selected of such a kind that their cultivation will not injure, but rather improve the succeeding corn crop. The selection of the particular kind, however, is always governed by the condition of the soil. In a field abounding in stalk and leaf constituents, it is often found useful to have wheat preceded by tobacco or rape, rye by turnips or potatoes, since these plants, by drawing from the soil a large amount of leaf and stalk constituents, serve to restore a more suitable proportion betwcen the straw and corn constituents for the future coreal crop, and, at the same time, to diminish in the arable soil those conditions which favor the growth of weeds.

[^15]Prof. James F. W. Johnston says :* "Two practical rules are suggested by the fact that different plants require different substances to abound in a soil in which they shall bs capable of flourishing.
"1. To grow alternately as many different classes or families of plants as possible, repeating each class at the greatest convenient distance of time. In this country (England) we grow, chiefly, root crops-corn plants refined for seed-leguminous plants, sometimes for secd (peas and beans), and sometimes for hay or fodder (clover and tares), and grasses; and these in alternate years.
"Every four, five, or six years, therefore, the same class of plants comes round again, and a demand is made upon the soil for the same kinds of food in the same proportion. * * * * * A perfect rotation would include all those classes of plants which the soil, climate, and other circumstances allow to be cultivated with a profit.
" 2 . A second rule is, to repeat the same species of plants at the greatest convenient distance of time. * * * * *
"Instead, therefore, of a constant repetition of the turnip every four years, theory says, make the carrot or the potato take its place now and then, and instead of perpetual clover, let tares, or peas, or beans occasionally succeed to your crops of corn. $\dagger$

[^16]"The land loves a change of crop because it is better prepared with that food which the new crop will relish than with such as the plant it has long fed before continues to require.
"It is for this reason that new species of crop or new varieties, when first introduced, succeed remarkably for a time, and give great and encouraging returns. * * * *
"It is constant variety of crops which, with rich manuring, makes our market gardens so productive, and it is the possibility of growing in the fields many different crops in succession that gives the fertility of a garden to parts of Italy, Flanders, and China."

The rotation to be adopted may be best selected by each farmer for himself-keeping in mind the foregoing principles -with reference to his soil, his market, his climate, the price and supply of labor in his neighborhood, and the extent to which he can accumnlate manure.

The rotation which the writer has adopted for his own farm is the following:-

First year:-Indian corn, on sod land, manured the previous autumn with the entire accumulation of manure in the barn cellar, then ploughed and left in the rough furrow for the fullest exposure to frost, harrowing thoronghly before planting time.

After the crop is taken off in the fall, the land to be ploughed and again left in the rough furrow to winter.

Second year:-Roots, the ground being properly divided between carrots, mangel wurzel, turnips, and parsnips.
For this crop the land is cross-plonghed in the spring, dressed with one-half of the winter's accumulation of manure in the cellar, and from 100 to 250 lbs . of superphosphate of lime, both sowed broadcast on the furrow and thoroughly harrowed in.

Third year:-Green forage crops for "soiling" cattlemainly oats and Indian corn in successive sowings.

These crops receive the balance of the winter's manure, and a good-portion of the land is cleared off in time for winter rye to be sown.
Fourth year:-The winter rye is cut green, very early in the season, for "soiling" the cattle, and on the land not occupied with it a crop of green fodder is grown that can be got off by August 1st.
In the early autumn the land to be sown to wheat, and seeded down with timothy and clover.

Fifth year:-The grain harvested and the growth of grass and clover left on the land.
Sixth year:-Two cuttings of hay to be taken off, and the land to be manured and ploughed in the fall for the succeeding crop of corn, with which the rotation recommences.

## PROPERTIES AND COMPOSITION OF MILK, BUTTER, \&c.

Composition of Milk in 1000 parts.

$$
\text { Water........................................... } 840
$$

Casein ..... 40
Milk-sugar ..... 45
Butter, or oil ..... 40
Phosphate of lime ..... 17
Phosphate of magnesia. ..... 4
Chloride of potassium. ..... 9
Common salt. ..... 2
Free soda ..... 3
1000

Note.-Milk is heavier than water in the proportion of 103 to 100.

The rapidity with which cream rises to the surface depends upon the temperature to which it is exposed.
New milk, set aside, will cream in
36 hrs . if the temperature of the air is $50^{\circ}$ Fahrenheit.

| 24 | " | " | " | " | $55^{\circ}$ | " |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 18 to 20 | " | " | " | " | $68^{\circ}$ | " |
| 10 to 12 | " | " | " | " | $77^{\circ}$ | " |

At a temperature of $34^{\circ}$ to $37^{\circ}$, it may be kept two to

388 properties and compostition of milk, butter, \&C.
three weeks without throwing up any noticeable amount of cream.

Crcam contains the greater part of the fatty matter of the milk, a small portion of the curd, and considerable water.

Good cream, when skiifully churned, will yield about one-fourth of its weight of butter.

The temperature at which milk can be churned most, economically is $65^{\circ}$ Fahrenheit.

The temperature at which cream can be churned most economically is at $58^{\circ}$ Fahrenheit.

Butter contains more or less of all the ingredients of the milk. Essentially it consists of the fat of milk mixed with about one-eighth of its weight of water, a small quantity of casein or curd (cheesy matter), and of saline matter. The casein seldom exceeds two per cent. of the whole weight.

The fat of butter, when solidified by pressing out the oil, is identical with the solid fat of the human body.

The oil of butter is a peculiar kind of fat not hitherto detected in any other substance.

These two ingredients vary considerably with different samples ; hence the different degrees of hardness which different samples present. The solid fat abounds more in winter ; the liquid fat more in summer. They are in about the following proportions in 100 parts :-

|  | Summer. | er. |
| :---: | :---: | :---: |
| Solid fat. | 40 | 65 |
| Oil of butter.. | 60 | 35 |

The main cause of butter becoming rancid is the chemical decomposition which the casein or curd it contains undergoes by exposure to the air. This chemical change in the cheesy matter may be prevented-

1st, By thoroughly washing and salting before the cheesy matter has had time to become altered by exposure to the air ;

2 d , By taking care that any water that may remain in or around the butter be kept perfectly saturated with salt;

3d, By carefnlly excluding the air from the vessel in which the butter is packed.

About half a pound of the best Ashton salt is used to 10 pounds of butter.

Milk contains a peculiar kind of sugar called milk-sugar, which, being lighly soluble in water, passes off in the whey and goes to fatten pigs. In some countries it is extracted and made an article of commerce.

The main cause of milk becoming sour is the chemical change which this sugar undergoes, without fermentation and therefore without loss, into an acid called lactic acid.

This lactic acid is the cause of the curdling of the milk, which may be hastened by hastening the change of the milksugar into lactic acid by the addition of any other acid, such as vinegar or rennet.

Pure casein is nearly insoluble in pure water, either by boiling or otherwise. By adding, however, a little soda to the water, it dissolves and returns to its milky condition ;

390 PROPERTIES AND COMPOSITION OF MILK, BUTTER, \&C.
when, by adding some more milk-sugar (or lactic acid), it again curdles.

The milk of nearly all animals contains the same ingredients. The best known varieties consist nearly of-

|  | Woman. | Cow. | Ass. | Goat. | Ewe. |
| :--- | :---: | ---: | ---: | ---: | ---: |
| Casein........ | 1.5 | 4.5 | 1.8 | 4.1 | 4.5 |
| Bntter........ | 3.6 | 3.1 | 0.1 | 3.3 | 4.2 |
| Milk-sugar. . | 6.5 | 4.8 | 6.1 | 5.3 | 5.0 |
| Saline matter. . | 0.5 | 0.6 | 0.3 | 0.6 | 0.7 |
| Water....... 87.9 | 87.0 | 91.7 | 86.7 | 85.6 |  |
|  | $\overline{100 .}$ |

The butter and cheese producing quality of milk is shown by the following

## Table.



The milk of different cows varies much in richness. We have known one from 65 lbs . of whose milk were made 64 oz. of butter. A full milk cheese contains about 33 per cent. of water, and a skim-milk cheese about 60 per cent.

Butter at 50 cents per pound will yield about as much profit as cheese at 15 cents, making no allowance for the value of skim-milk over whey.

## BUTTER AND CHEESE-MAKING.

The Butter Dairy.-The quality of butter doubtlessly depends more upon the manufacture than upon all other causes combined, yet it is true that the cows, the grass or food, and the water, have much to do with the delicacy of its flavor and richness of its color. It is a notorious fact that eight-tenths of the butter that is sold in the market brings from five to fifteen cents per pound less than it would have done had it been properly manufactured. Factory cheese for the same reason brings from three to eight cents per pound more than dairy. It costs no more to make a good article than an inferior one, and when this fact is fully appreciated, thousands of dollars will be saved annually to the dairyman farmer.
Milk-room.-The best milk-room is one through which a stream of pure spring water flows, and a reservoir under the "pan rack" is very desirable. When this cannot be had, select a room or building on the north side of the house, through which fresh air can freely circulate. If a cellar is chosen, it should be dry and thoroughly ventilated by large latticed windows and doors. No decaying vegetables should be allowed to remain in it, as the milk and cream easily become tainted. Close and damp cellars are
entirely unfitted for a milk-room, and should not be used. The temperature of the milk-room should be as uniform as possible, ranging from $55^{\circ}$ to $65^{\circ}$. When the weather is cold, a fire should be kept in a stove on which a basin of pure water is placed, to prevent the air from becoming so $d r y$ as to form a crust on the cream. When too warm the temperature can be reduced by hanging wet linen sheets near the doors and windows, the lower edges of which dip into a vessel of water.

Cleanliness.-In every department of butter-making the utmost cleanliness should be observed. Milk and cream rapidly absorb noxious gases, and are especially affected by the acids and gases which arise from the decomposition of sour milk or cream. Every utensil used in connection with the dairy should be scalded every time used in boiling water, in which, occasionally, a small piece of bicarbonate of soda las been dissolved. All traces of mplk or cream accidently spilled on the floor should be carefully removed.

Setting the Milk.--As soon as the milk is drawn from the cow it should be strained into the setting pans, to a depth of not ever twe inches. The complete raising of the cream, especially in warm weather, is thus greatly facilitated. In summer the temperature of the milk should be reduced as soon as possible to about $62^{\circ}$. Powdered ice put into the pail before straining is best; setting the pail in cold spring or well-water for a few minutes will answer. A small piece of crystallized soda about the size of a common acorn,
dissolved in a little water, put into each pail of milk before straining, to correct the acidity as it is formed, will increase the quantity of cream, and improve the quality of the butter. Milk, if kept at the proper temperature, need not stand over thirty-six hours. If the cream does not rise in that time, the quality of the butter will be impaired by the formation of a bitter acid, which gives to the butter a disagreeable flavor. In winter the quantity of cream will be increased, and its quality improved, by bringing the milk to a temperature of apout $120^{\circ}$ before setting.

Cream.-As soon as the cream is taken from the milk it should be placed in stone jars or tin pails and set in a cool place. Sprinkle a small handful of fine salt over the top of the cream, and let it stand until churned. Should there be any milk at the bottom of the jar it should be separated from the cream, for the cheesy particles of the sour milk become mixed with the butter during the process of churning, and give it the white cheesy appearance which is sometimes observed when the butter "comes white." The cheese decomposes upon exposure to the air, and renders the butter rancid. Such butter should never be packed with the good, for it will surely spoil the whole; "a little leaven will leaven the whole lump."

Churning.-The proper temperature at which to churn cream is from $55^{\circ}$ to $60^{\circ}$, and care should be taken that the cream be "washed down" sa that all will granulate at the same time. When the butter "has come" to the size of 17*
peas, draw or pour off the buttermilk, and pour into the churn a pail of cool water, and thoroughly "gather" by the aid of the "dasher" the butter into a compact mass; after which remove it to the butter-bowl. It should be again washed until the water is free from the least trace of milkiness, and then salted. Use the best Ashton salt, and if free from water one-half pound of salt is sufficient for 10 pounds of butter. Common salt should never be used, for it contains impurities which injure the batter. The cheapest salt in this case is certainly not the most economical. While the salt is being worked in, if too soft let it stand in a cool place not over three or four hours, then work again and pack. While working, absorb all the moisture from the butter with a sponge covered by a linen cloth, previously moistened in cold water, and continue to work until all the brine is absorbed. No milky brine * should be allowed to remain in the butter, for it decomposes and injures it. During the process of working the temperature of the butter should not be higher than $55^{\circ}$ or $58^{\circ}$. When it becomes warmer than this it looses its waxy, grannlar appearance, and becomes sticky and greasy. When the salt is not thoroughly worked in, the butter will have a streaked or marbled appearance.
Packing.-Place no undissolved salt in the bottom of the

[^17]tub or pail, unless covered with a cloth so the butter cannot come in contact with it. If this caution is not observed when sold, four or five pounds of butter is thus rendered comparatively worthless. Never pack a poor "churning" with the good butter, thinking it will not be found out. The sale of many a good firkin of butter is spoiled by a few pounds of poor butter becoming rancid in the centre or bottom, which taints the whole package. If there is any butter that is even suspicions put it by itself.

Select neat pails, tubs, or firkins made of white oak, and cleanse them by placing in each about a pound of the common bicarbonate of soda, and then filling with boiling water, letting the water remain for twenty-four hours. Great care should be used in cleansing pails that are to bere-filled,* as they are usually bedaubed to a greater or less extent with rancid butter. A neglect of this precaution will often cause great loss. Butter until the first of June should be packed in pails or tubs and shipped as soon as made. This butter will keep sweet only a short time. As soon as the weather becomes too warm to ship without risk, pack in firkins, being careful to exclude the air as far as possible while packing. When the firkin is filled to within an inch of the top, dissolve two tablespoonfuls of white coffee sngar, and a piece of saltpetre about the size of a common bean, in sufficient strong brine to cover the butter and

[^18]exclude the air. Place it in a cool dry cellar, and do not disturb it until ready to be shipped. In the fall the butter should be packed in pails or tubs and sold as fresh butter. An air-tight butter pail or tub is very desirable for shipping spring and fall butter.

Test of good butter.-Good butter should have a granular, waxy consistency, and a rich yellow color, except in the winter and spring, when the color is of a pale yellow or nearly white. When cut it should not soil the polished blade of the knife, and the cut surfaces should be free from a dewy appearance. The taste and smell should be entirely free from the slightest trace of rancidity, for if not, however good otherwise, when exposed to the air for a few days it will become almost worthless. The flavor of butter is various, generally depending upon the season, the water, the food of the cows, \&c. The preference is merely a matter of choice. If butter upon being cut or repacked is covered with small drops of milky brine, it shows that it has not been sufficiently washed and worked, and although sweet it will not remain so if exposed to the air. When opened for use it should be immediately covered with a strong brine. When it is sticky or greasy, it shows that it was too warm while being churned and worked, or has been overheated since. Such butter is rancid, or will become so as soon as opened.

Setting-pan.-To insure a perfect separation of the cream from the milk a setting-pan has been successfully used in

England. It consists of a large tin pan about four inches deep, holding from four to six pails of milk. It may either set on a table or float in a reservoir of running spring water. Where running water is not to be had, the proper temperature may be obtained by the dripping of melting ice. At one end is a tube covered with a fine strainer to prevent the escape of the cream, through which the milk is to be drawn off, leaving the cream in the pan. All the cream may be secured by rinsing the pan in a little warm water.

The Cheese Dairy.-The superiority of factory cheese is entirely due to the great care exercised in its manufacture. But little cheese is now made by private dairies, for it can be better and more economically manufactured at the factory. With proper management it is more profitable for those who do not live near a cheese factory to make butter, unless they provide themselves with all the necessary apparatus.

Rich Cheese.-The richness of cheese varies in proportion to the amount of the butter that remains entangled in the curd. The following brief directions are from a practical cheesemaker:-
"When two milkings are united, strain the evening's milk and cool by means of pieces of ice dropped into the pails before straining. In the morning take off all the cream, mix it with twice the quantity of new milk. Add warm water enongh to raise it to the temperature of $98^{\circ}$. Rub annatto through a silk cloth sufficient to make the curd the color of rich cream. Into this put rennet safficient to
curd in 35 minutes. Stir the whole into the milk previously raised to the temperature of $85^{\circ}$. The milk should be warmed by means of a pail of hot water set into it, but never by putting it over the fire, for the least burning of the milk will spoil the cheese. While the curd is setting, cover with a cloth to prevent the surface from cooling. The method of cutting, scalding, and pressing depends upon the varieties of cheese to be manufactured. About $\frac{1}{4}$ of a pornd of the best Ashton salt is sufficient for 20 lbs . of curd. Care should be taken that the whey be entirely expressed."

The different varieties of cheese come to market under the names of Chedder, Cheshire, and Gloucester. These are English cheese. The Dunlop cheese is from Scotland. The Dutch cheese is made in the north of Holland. The Parmesan cheese is made in. Italy. Factory cheese is the best manufactured in this country, some of it being equal to the English. The private dairy cheese is of every grade and quality, from the richest Chedder to that made of skim-milk.

Thermometer.-In the butter and cheese dairy the thermometer should be a constant companion. Those who trust to sensations are not aware how easily they may be deceived. Let a person put one hand in cold water, the other into warm, then both into another vessel, and it will feel warm to one hand and cold to the other. The only certain guide is the thermometer; its cost is but a trifle, it will save many dollars annually.

Ice-house.-Next in importance to the thermometer is the ice-house. Many farmers say "I can't afford it." They should say "I cann't afford to be without it." It will save three times its cost every year. The method of building the following is so simple, and involves so triffing an expense that no man need have an excuse.

Select a place on the north side of some building; lay a floor twelve feet square on scantlings, one foot from the ground. Set firmly in the ground, near each corner, two posts, from four to six inches square, and about eight or ten feet long. When the weather becomes cold, place on the floor saw-dust, tan-bark, or rye-straw, to the depth of eight or ten inches. On the top, place another floor of the same size, putting a curb inside the posts to keep the filling between the floors in its place. Next make a curb ten feet square and six inches deep, and fasten the corners with common gate-hooks. On a cold day place the curb on the centre of the floor, put in two inches of tan-bark, and dash water over the bottom until it forms a coat of ice that will not leak. Fill the curb with water and let it stand until frozen solid. With boiling water thaw the curb loose, raise it to the top of the frozen mass, fill and freeze as before. Continue so doing until the mass is of the desired height. Place boards on the inside of the posts, and fill the space with tan-bark or rye-straw ; nail boards on the outside of the posts and fill the space with rye-straw; cover the top with tan-bark to the depth of ten inches. Over the whole
put a roof, to shield from the sun and rain. Cut and take the ice from the top. Ice can be thus kept the entire season. If a stream of running water can be turned into the curb, the labor of filling will be much lessened.


## SOILING CATTLE.

This is a rather unmeaning expression, and its origin is no more clear than is the fitness of its application; still it has come into such general use that it is now too late to change it.

It is applied to the feeding of cattle in yards or in stables, with grass or other green fodder, cut and hauled to them.

This practice is very rapidly growing in favor in all localities where land is very high priced, where manure is largely used, where the finer class of animals are kept, and where for any reason it is desired to keep a large stock on a small place. It is the best foundation of what is called High Farming.

It has been found by experiment that if a field bearing luxuriant grass or clover is divided into two equal parts, one half being used as pasture and the crop of the other being cut and fed in the stable as often as it grows to a sufficient height, this latter half will snpport, for the same time, four times as many animals of equal weight as will the depastured portion; and while the usual allowance of pasture land is at the rate of two acres for each cow, the allowance of land in soiling, where the system is practised in the best manner, is at the rate of only one-half of an acre for each cow.

Of course, this would not hold good on ordinary land which had been in no way prepared for the practice, but after one or two years' preparation by judicious use of the manure made by the animals fed, and by the aid of proper management, any fair land will support, on the system of soiling, four times as much stock as if they grazed upon it constantly and voided upon it all of their manure.
It was for a long time questioned, and very naturally too, whether cattle would remain in good health if they were deprived of the exercise which they necessarily take in getting their own food in the fields; but ample experience has proved that, if they are allowed good yards in which to exercise for a short time, once or twiee a day, they keep in better condition and are less liable to disease than when they are exposed to the various changes of the weather in the fields.
It is. also sometimes objected that this treatment is an unnatural or an artificial one. To this the reply is that our domestic animals are artificial prodnetions. In nature we see no working oxen, and no cows give during the whole year a tenth part of the quantity of milk that cows have been forced to give in a state of domestication.

With the writer, the soiling of cattle is not a matter of theory. He has adopted the system on his own farm, and has sufficient evidence in his own practice of its substantial advantages.
Perhaps the most practical way to give an idea of the
manner in which stock is managed under the soiling system will be to describe the operations as there carried out.*

The farm $\dagger$ comprises sixty acres, lying in a nearly square body, and all in one field. Adjoining the main farm there is a small field in which to pasture calves during their first summer only, but it is not intended that the older animals shall ever feed except in their stalls.

In the centre of the farm there is an enclosure of about four acres, within which are concentrated all of the farm buildings; outside of this there is nothing to interfere with cnltivation-no interior fences, rocks, nor trees.

The barn-yards occupy two acres of what was formenly an apple-orchard, and in the middle of this stands the barn ( $40 \mathrm{ft} . \times 100 \mathrm{ft}$.). This has a cellar under the whole for the accumulation of manure, and (one corner of it) for the storage of roots. The main floor-the whole extent of the building -is occupied by two rows of stalls, the animals facing a central passage-way, through the entire length of which there runs a railway with a car, for distributing the food. The next floor above is used for the storage of hay and grain and of implements, and for the cutting and steaming of food in winter. Each floor and the cellar can be entered by loaded teams.

On the cattle floor there is'a system of water-troughs which are constantly supplied from a tank on the floor

[^19]above, which is filled by a wind-mill, from a running spring. By this means water is always kept within reach every animal.

The floor is divided into four principal parts, separated from each other by bars which run (one on each side of the barn) from the rear of the stalls to the wall; and each of these divisions has its own door, communicating with a yard nearly half an acre in size, surrounded by a four-foot stone wall, and sufficiently shaded by the remains of the former orchard. Each set of animals has its own quarters and its own ample exercising ground, so that all danger from over-crowding is avoided.

They are turned out for exercise in pleasant weather at 8 A.M. and at 2 p.m., and are kept out (by closing the doors) for about two hours each time. If the doors are left open they return to their stalls almost immediately. Being abundantly fed, they show no disposition to move about, and I ain satisfied that they give more milk and keep in better condition than if they were allowed the best pasture without shelter, even in the summer time.

Five times a day they are given as much green fodder as they will eat. This is cutin the field, loaded on to a cart, and hauled to the upper floor of the barn, where it is dumped through a trap-door into the car, by which it is carried to the stalls. The manure is dropped through an open slatfloor, and through scuttles, into the cellar, whence it is drawn in wagons directly to the field, having been well
worked over by hogs while in the cellar. Thus it will be seen that the labor of attending to a large stock of cattle is reduced to the lowest possiblc amount.

## ARRANGEMENT OF CROPS FOR SOILING.

The amount of land that it is necessary to appropriate for the supply of fodder for each animal must, of course, denend on the quality of the land and on the degree to which its productiveness is forced.

Under all ordinary circumstances, one-half acre of land, in good heart and in good tilth, should be allowed for each full-grown milch cow of the ordinary breeds (more for shorthorns), but, under high cultivation, this will allow a considerable amount of the produce to be cut for winter use.

The regular soiling crops are the following :-
Winter Rye,
Cabbages, Oats, Clover, Grass, and Indian corn.
Many other crops are available, such as Hungarian grass or millet, wheat, Jerusalem artichoke, sainfoin, \&c., but - the foregoing are the regular dependence of American farmers, and are the best for common use.

The best essay that has yet been written in this country
on the subject of "soiling" was prepared for the Massachusetts Agricultural Society by the Hon. Josiah Quincy, and was published in the Journal of that Society for 1820.

His recommendation is as follows:-
" 1. As early in April as the state of the land will permit, which is usually between the 5th and the 10th, on properly prepared land, sow oats at the rate of four bushels to the acre.
"2. About the 20th of the same month, sow oats or barley, at the same rate per acre, in like quantity and proportions.
"3. Early in May, sow, in like manner, either of the above grains.
"4. Between the 10th and the 15th of May, sow Indian corn (the flat Southern being the best) in drills, three bushels to the acre, in like quantity and proportions.
" 5 . About the 25 th of May sow corn in like quantity and proportions.
"6. About the 5 th of June repeat the sowing of corn.
" 7. After the last-mentioned sowing, barley should be sown in the above-mentioned quantity and proportions, in succession, on the 15th and 25 th of June, and on the 1st of, or early in July; barley being the best qualified to resist the early frosts."

Mr. Quincy depended on the mowing of the best of his grass land to carry his stock through the month of June, or from the earliest pasturing season to the 1st of July,
when he expected his first sowing of oats to be ready for the scythe. After the first killing frost, he depended on the tops of about twelve acres of root crops, for the use of fifteen cows.

The plan which I have adopted is a modification of the above, and is as follows (for twelve cows) :-

1. Early in the autumn sow three acres of winter rye, to be cut from May 15th to June 15th.
2. Early in April, three acres oats, to be cut from June 15th to July 1st.
3. Late in April, two acres oats or barley, to be cut from July 1st to July 15th.
4. Early in May, two acres oats or barley, to be cut from July 15th to August 10th.
5. Middle of May, two acres corn, to be cut from August 10th to September 1st.
6. Middle of June, the three acres from which rye has been cut to be sown with corn, to be cut from September 1st until September 20th.
7. Early in July, the first three acres sown with oats to be resown with barley, to be cut from September 20th until the harvest of roots and cabbages furnishes a stock of green refuse, which will suffice until winter feeding commences.

This is an allowance of twelve acres for twelve cows, and assumes that the latter end of the scason will be helped out by root tops, \&c. The reason for appropriating so much land
is that the soil is not yet in sufticiently good condition to insure an ample supply from a much smaller area. In a season of extraordinary drought the whole of the product may be cousumed, but in any ordinary year a very large part of it wonld be in excess, to be cured and stored for winter use, and to furnish a supply of dry food, with which occasionally to alternate with the fresh fodder, to prevent the too great relaxation of the bowels which a free use of succulent food sometimes causes.

In September three acres of the four comprising Nos. 4 and 5 should be sown with winter rye for the following spring's use, and the rotation should follow in regular order. If all of the manure made in the soiling season were to be used on these twelve acres year after year, I am satisfied that they might be made in time to support, during the whole of the usual pasturing season, thirty milch cows, or five cows for each two acres.

In my own case, as one of my reasons for adopting the system of soiling has been that it is the best help in bring. ing up a worn-out farm, I shall each year raise my forage on fresh land, so as to give the whole place the benefit of the treatment.

Of course, a rule which will apply in one region may not be the best for another, and each farmer must decide for himself the extent to which he can profitably adopt the system on his farm, and also what crops will best aceomplish the desired end in his own case.

Where it is desirable to plough as little as possible, clover and grass may with advantage enter much more largely into the arrangement.

Two general principles, however, may be stated as applicable to all of the more temperate regions of our Northern States-

1. The earliest abundant food will be secured by the use of winter ryc.
2. The best and most abundant food for the later summer and earlier autumn time will be secured by the use of Indian corn.

ARGUMENTS IN FAVOR OF SOILING.
Mr. Quiney states the following as the leading. advantages of this system:-
" 1 st. The saving of land.
" 2 d . The saving of fencing.
"3d. The economizing of food.
"4th. The better condition and greater comfort of the cattle.
" 5 th. The greater product of milk.
" 6 th. The attainment of manure."
On the subject of the 3d item-the economy of food-he says: "There are six ways by which beasts destroy the article destined for their food-1. By eating; 2. By walking; 3. By dunging ; 4. By staling ; 5. By lying down ; 6. By
breathing on it. Of these six, the first only is useful. All the others are wasteful."
The other points he elucidates with equal force, but at too great length for full quatation here.

The statement made above that a milch cow may be kep't during the ordiuary pasturing season upon the produce of one-half acre of land, while of land of the same character at least two acres would be necessary on the pasturage system, is sufficient to illustrate the saving of land. Yet this statement, which will be supported by the testimony of all who practise the system on land of good quality, is far below the estimate of many who have had a lifelong experience of soiling in Europe. Some of them place the proportion in favor of soiling as high as 1 to 7 . Of course the amount of stock which may be fed from the produce of a single acre depends very much on the inanner in which that acre is cultivated, and the question of the cost of labor must determine whether it is or is not profitable to force the production beyond a given extent.
As to fencing, it is only necessary to remind nearly every farmer of his own experience of the first cost of building, and of the yearly cost of repairing the fences of his own farm, and to say that by the soiling system, when completely carried out, all interior fences may and should be entirely dispensed with.
Add to the question of expense, the fact that useless headlands and their nurseries of noxious weeds are got rid of,
and that the plough can be driven, if desired, straight through from one side of the farm to the other, and the argument needs no re-enforcement.

Concerning the condition of the cattle, the following is stated by Quincy :-" One writer asserts that he has kept a large herd for several years in this way, and during the whole time 'he never had an animal essentially sick, had never one die, and had never one miscarry.'" The general result of the experience of hundreds of farmers in Europe, and of considerable experience in America, is, that cattle are really better off in every way, under the protection of the soiling barn, with its ample and regularly supplied food, and with the advantage of daily currying and exercise, than when left to shift for themselves exposed to the vicissitudes of the weather.

The quantity of milk may never be so large as it is during the flush weeks of June, when the cows are gorging their maiden appetites on rieh grass; but the consumption of food from the first of May to the first of November (and consequently the yield of milk) will be much greater.
"Last, but by no means the least," the question of manure asserts its claim to the fullest consideration. Were it not for this item of the calculation the arguments in favor of soiling would lose more than half their force.

The immense superiority, both in quality and evenness of distribution over the soil, of manure which is made and kept under cover, over that which is dropped at random on pas-
ture fields; and the advantage of being able to apply it when we please, where we please, and in such quantities as we please, are too well known to all who have to use manure to produce paying crops, for any argument on the subject to be necessary. There is no way in which so much manure of such excellent quality can be landed on the farm without a far greater outlay of money than is necessary to pay for all the labor required for ploughing, sowing, "tending," cutting, and hauling the food, and for currying and feeding the animals under the most complete soiling management.

Of course the manure argument does not hold (nor is the system of soiling to be recommended) for those districts of the West where the laughing harvest follows the tickling hoe; where straw is burned in the fields, and barns are moved to get away from the accumulated manure. But for the older settled countries of the East and South (and for the future West-the West with its "inexhaustible fertility" exhausted) it does hold, and with such force that as population grows more dense-and farmers more wise-it alone, even if there were no other advantage in the system, must in time compel the rapid increase of the practice of soiling.


## STEAMING FOOD FOR STOCK.

A more recent improvement than "soiling" in the keeping of cattle, on farms where it is important to make every pound of food tell with the fullest effect in the production of meat, muscle, or milk (and on what farm is this not important?), is the steaming of food in winter.

Although this practice has been the subject of much less experiment than soiling, and is, consequently, less generally recognized as worthy of adoption, enough is known of its advantages, both by experience and from theory, to make its brief discussion necessary to the completeness of this book.

During the past year I have investigated the subject with some thoroughness, and have determined to adopt it on my own farm; and I can hardly do better than to give here some account of my investigations, in order that my readers may decide for themselves the soundness of my reasons for the determination.
My serious attention was first called to the matter by an article in the Report of the Department of Agriculture for 1865, written by Mr. E. W. Stewart of North Evans, N. Y. He therein details his own experience of ten years in steaming food for a large stock of cattle and horses, gives a succinct statement of the reasons why steaming is beneficial,
and sustains his own opinion by the concurrent testimony of other practical farmers who have found the practice beneficial.

The following are the results of the operation as stated by Mr. Stewart:-
"1. It renders mouldy hay, straw, and corn-stalks perfectly sweet and palatable. Animals seem to relish straw taken from a stack which has been wet and badly damaged for ordinary use ; and even in any condition, except 'dry rot,' steaming will restore its sweetness. When keeping a large stock, we have often purchased stacks of straw which would have been worthless for feeding in the ordinary way, and have been able to detect no difference; after steaming, in the smell or the relish with which it was eaten.
"2. It diffuses the odor of the bran, corn-meal, oil-meal, carrots, or whatever is mixed with the feed, through the whole mass; and thus it may cheaply be flavored to suit the animal.
"3. It softens the tough fibre of the dry corn-stalk, ryestraw, and other hard material, rendering it almost like green succulent food, and easily masticated and digested by the animal.
"4. It renders beans and peas agreeable food to horses, as well as other animals, and thus enables the feeder to combine more nitrogenous food in the diet of his animals.
" 5 . It enables the feeder to turn everything raised into
food for his stock, without lessening the value of his manure. Indeed, the manure made from steamed food decomposes more readily, and is therefore more valuable than when used in a fresh state. Manure made from steamed food is always ready for use, and is regarded by those who have used it as much more valuable, for the same bulk, than that made from uncooked food.
" 6 . We have found it to cure incipient heaves in horses; and horses having a cough for several months at pasture, have been cured in two weeks on steamed food. It has a remarkable effect on horses with a sudden cold and in constipation. Horses fed upon it seem much less liable to disease; in fact, in this respect, it seems to thave all the good qualities of grass, the natural food of animals.
" 7 . It produces a marked difference in the appearance of the animal, at once causing the coat to become smooth and of brighter color-regulates the digestion, makes the animal more contented and satisfied, enables fattening stock to eat their food with less labor (and consequently requires less to keep up the animal heat), gives working-animals time to eat all that is necessary for them in the intervals of labor; and this is of much importance, especially with horses. It also enables the feeder to fatten animals in one-third less time.
" 8 . It saves at least one-third of the food. We lave found two bushels of cut and cooked hay to satisfy cows as well as three bushels of uncooked hay, and the manure in the case of the uncooked hay contained much more fibrous 18*
matter unutilized by the animal. This is more particularly the case with horses."
Other publications on the subject fully confirm Mr. Stewart's estimate, and we commend his essay, which is accessible to all, to the careful attention of every feeder of farm stock.
In January (1868) I visited the farm of Messrs. S. \& D. Wells, at Wethersfield, Conn., for the purpose of examining their cow stable and its fixtures.
The leading features of this establishment are a constant water-supply, and apparatus for cutting and steaming food.* The latter was introduced at a cost of about $\$ 500$. It comprises a three-horse steam-cngine of very simple construction, a tubular boiler of sufficient capacity to run the engine, a strong power stalk-cutter, and a chest for steaming food.
There were about thirty cows in the stable. They receive steamed food morning and night, and dry hay at noon. The steamed food consists of hay of poor quality, straw, or cornstalks, cut to short lengths, sprinkled until thoroughly wet, and then dusted with bran or meal, and steamed for about two hours.

The engine has power enough to cut in a couple of hours

[^20]a supply sufficient for the whole week, and enough is steamed at one charge to last for three or four days. Steam is made only twice in each week (once for cutting and steaming, and once for steaming only), and then only for a short time.
The steaming box is about four feet square and eight feet high. The materials are put into the box from the floor above that of which the cow stable is an extension, and are removed through a door in one of its sides on the feeding floor. Elevated a short distance above the bottom, there is a false bottom perforated with many holes. The stean is let in bolow this, and is thus allowed to rise evenly through the the whole mass.

The box is made of two thicknesses of one-inch, matched spruce boards (one set running up and down, and the other across). The doors are not made with any very great care to prevent the escape of steam, nor does it seem to be considered necessary to do more than to have the box strong enough to hold its burden of wet fodder.
The Messrs. Wells find that Mr. Stewart's opinion-given above-is, in all essential particulars, sustained by the results of their experience. They think that steaming adds one-half to the feeding value of fodder.
It was what I saw on their farm, more than anything else, which cansed me to decide on adopting the system in my own practice. My apparatus is not yet completed, and I cannot, therefore, speak on the subject with the authority of a successful experimenter; but from all that I can learn, I
am satisfied that the advantages of steaming have hardly been overrated.
The theory of the process (in a nutshell) is this: Cattle and horses in a state of nature live the year round on succulent green herbage. When the cold weather legins to cut short the supply in the more northern latitudes, they migrate toward the south. Man steps in and keeps them in the colder climate. He substitutes dried grass for fresh grass. Steaming will, in a great measure, restore hay to the condition of green grass. Also, many constitnents of hay, straw, \&c., are insoluble and indigestible. By the action of heat and moisture they become soluble, or at least are reduced to a condition in which they are easily available to the digestive organs of animals. Starch-grains, according to the best authorities, are coated with a layer or cuticle which resists -to a great extent-the action of the juices of the stomach, while its interior parts, could they be directly exposed, would readily be assimilated; therefore, as heat causes the interior of the grains to swell and burst their coating, exposing themselves on the surface, as the interior parts of a kernel of corn do in "popping," the process of steaming (or any cooking) makes the starchy part of food more readily available.
Examinations of the droppings of animals fed on cooked and uncooked food furnish results which confirm the foregoing opinion.

Carefully conducted experiments on animals of equal
weight, and of like condition in all respects, invariably show that those which are fed on cooked food take on fat, and form bone and muscle more rapidly than those which get only raw food. If, after a certain time, the food is changed -the cooked being given to the animal that has been receiving the uncooked, and vice versa-the rapidity of growth will change too. The trial has often been made, and the result has been invariably the same.

In fact, in all of the essays and opinions on the subject of cooking food for domestic animals, in this country and in Europe, I have failed to find the first one that is not decidedly favorable.

Steaming, of course, is valuable only because it is a means of cooking, and the arguments in its favor bear equally on the subject of boiling. Steaming is rapidly coming into use because of its greater convenience and economy.

How to make a Steaming Apparatus.-Any device by which steam may be generated under a very slight pressure -barely sufficient to cause it to penetrate the mass to be cooked-and conducted to the vessel in which the steaming is to be done, will accomplish the desired purpose; but, of course, the more convenient the arrangement, and the less the waste of steam (whether by condensation or otherwise), the more economically the process may be performed, as to both time and fuel.

Mr. Stewart suggests a plan which, from its cheapness, will answer a good purpose where the stock to be cooked
for is small, or where it is desired to experiment on a small scale.

It is a box made of well jointed 2 -ineh pine, seven or eight feet long, and about two and a half feet wide, with a bottom of No. 16 sheet iron, nailed securely on to the lower edge of the sides and ends, and turned up a little outside of them-say half an inch. This box has a false bottom, of wood or iron, placed about three inches above the fast bottom, and perforated with many small holes, and a closelyfitting cover over the top.

It stands on brick walls which do not come quite so far out as the wooden sides of the box. At one end of the chamber enclosed by these walls there is a wood fire-plaee, and from the other end a chimney rises.

The spaee between the bottom and the false bottom is partly filled with water, cut hay mixed with meal or bran is put in the box above the false bottom, the cover is closed, and the fire is started. The steam rises through the perforations in the false bottom, and cooks the mass above it.

A much more complete apparatus for steaming, and in large practice a more eeonomical one, comprises a boiler for generating the steam, a box in which to place the food, and a wooden, or well protected steam-pipe to connect the two. The box should have a perforated false bottom, and the steam should be introduced beneath this, so that it may diffuse itself uniformly through the mass.

The boiler may, of course, be of any pattern that will secure the economical generation of steam. A discarded engine-boiler will answer every purpose if it is strong enough to bear a pressure of, say, five or ten pounds to the inch-a slight pressure being necessary to force the steam through the mass of hay.
D. R. Prindle's Agricultural Boiler, which is shown in the accompanying cut, is admirably adapted for this use.


Fig. 1.


FTG. 2.

Prindle's Agricultural Steamer and Cauldron (shown in Figs. 1 and 2) is the invention of Mr. D. R. Prindle, of East Bethany, New York, and is largely manufactured by Messrs. Savery \& Co. of Philadelphia.

Its popularity seems to be rapidly increasing, and there is no question that it is the best steaming apparatus for the use
of all farmers who do not employ steam-engines that has yet been invented.

It consists of a cauldron set over a furnace arranged to burn either wood or coal, and furnished with a dome which fits closely over it and is keyed down so as to make a steam-joint It is provided with a test-cock to show when it needs the addition of water, a safety-valve which is also a vacuum valve, a funnel for filling, and one or more pipes to convey the steam to the cooking-boxes.

Aside from its use in steaming fodder for cattle, it may be used to heat water to scald hogs, or for other purposes, to warm buildings, to cook roots or meal for hogs or grain for fowls, and for a variety of other purposes for which hot air, hot water, or steam are useful.

For farm use, especially when constant steam is not required, Prindle's steamer is mach better than an engineboiler, as it works only at a very low pressure, and is consequently quite safe, and is much cheaper when we consider the cost of setting 1 p the larger engine-boiler, and its more expensive transportation.

Full particulars concerning the Prindle steamer may be obtained by application to the inventor.

I have not determined, in my own case, what power to adopt for the cutting of my long fodder. The question is about evenly balanced between a small steam-engine, a windmill, and a railway horse-power, for final use ; but as the first. cost will be less, I shall commence with the horse-power
belonging to a threshing machine, and a Prindle boiler, changing to one, the engine or mill, at a future day, if it seems desirable.

It is hardly prudent to make any positive calculations in advance of actual experiment, but I anticipate-and I base my calculations on a very careful survey of the whole field -a saving of about forty per cent. in the cost of feeding my stock, over the present system of feeding only the best hay uncut. A part of the saving will be due to the more digestible condition of the food, and a part to the fact that a much cheaper quality of hay, or straw, or corn-stalks can be largely used. A saving of very much less than this, when from thirty to forty head are to be provided for, will be enough to make a fair profit on the business.

The various uses for which steam can be adapted seems to be but little understood by the masses. Fear of explosions, scalding, \&c., as well as want of knowledge of its great advantages, has thus far prevented its general introduction.

The want of a perfectly safe and easily managed low pressure apparatus with which to accomplish all the requirements of domestic use, has also been a great drawback. The great advantages of cooking, heating, boiling, \&c., by steam, are obvious when it is remembered that it can be done with much less water and fuel, requiring but little care of the operator, and using wooden vessels (if desired) of any kind, size, or shape (a great desideratum). By its use there
is no re-filling of kettles (the ordinary mode) to get a desired quantity; no constant watching or stirring, or removal of the substance while hot, to prevent burning ; no cleaning of kettles for every separate job, which can be done by steam. By the use of this powerful agent, large quantities may be boiled or steamed, or several vessels (if need be) treated at the same time; and when desirable, the steam can be conveyed in pipes or logs to some little distance, using proper care in protecting the same from condensation; thus avoiding, many times, danger from fire, and accommodating itself to all the various purposes of domestic economy, as well as in the manufacturing of many articles or compounds, when danger from burning or explosion is so common. By steam the clothes may be boiled at any point in the barrel or tub; the bath-tub may be warmed in an adjoining room; the farm or stock-feeder could easily cook in quantities at a time, or scald his hogs, steam his barrels, \&c., \&c. We believe that when a cheap, simple, and perfectly safe apparatus is once introduced, that the subject (as it deserves) will receive much more attention, as by steam all classes might as easily be benefited.

## ADVANTAGES OF COOKED FOOD.

The American Agriculturist for January, 1860, says: " Experiments made by C. M. Clay, of Kentucky, showed that one bushel of dry corn made 5 lbs .10 oz . of pork; of boiled corn, 14 lbs .7 oz ., and boiled meal, 16 to $18 \mathrm{lbs} . "$

Morton's Cyclopodia of Agriculture (than which there is no higher authority in Europe) says: "As to steaming food for cattle, there is abundant experience to recommend it. The process of cooking renders soluble that which would otherwise be imperfectly digested. It removes, in some cases, what would otherwise be unwholesome; and it renders savory what would otherwise be distasteful."

Loudon's Encyclopodia of Agriculture remarks: "Unless food be thoroughly deprived of its vegetative powers before it enters the stomach, the whole nourishment which it is capable of affording cannot be derived from it. The most effectual mode of destroying the living principle is by the application of heat, by steaming or boiling."

The Society of Shakers, at Lebanon, N. Y., famous for pork-raising, say: "For fattening animals, swine particularly, we consider three of cooked equal to four of raw meal."

## GARDENING FOR MARKET.



While market-gardening, as a systematic business, is quite distinct from farming, there is no farmer who lives near a town who may not make the raising of certain crops on a small scale very profitable. Success in this branch of the business of the farmer requires that the land to be devoted to its prosecution he dry, warmly situated, with a good exposure, and rich and again rich.

The amount of manure which may be profitably applied to land intended for the growth of market vegetables has hardly any limit. One hundred cartloads of good horse
manure to an acre, every year, will pay more profit than will fifty loads; and I am inclined to believe that even two hundred loads would pay better still.

The cultivation of vegetables entails, in any case, a heavy outlay for labor, seed, expenses of marketing, \&c., and these are about the same (except in the matter of marketing) for a light as for a heavy crop-it takes a certain amount of produce to pay the cost, and up to this point there is no profit. Beyond this point, except the cost of the manure, it is nearly all profit, and the more we can stimulate excessive production the more rapidly will the ratio of profits increase over the expenses.

No farmer canhope to become really successful in raising vegetables for market until he is prepared to expend-including the value of the manure used-at least $\$ 300$ annually on every acre of his garden land. With this outlay, if his soil is good and well placed, and his market is a good one, and if he is the right man for the business, he ought to make a clear profit of $\$ 500$ per acre.

The character of the market should be well anderstood. If there is'a manufacturing town near by, or any town having a population which includes a large proportion of laboring people, the case is a simple one.

It should be well understood that it does not pay (at least so far as gardening is concerned) to feed the rich. They are like the black sheep of the flock, that don't eat so much as the white ones-there are not so many of them, and, as
another reason, they do not eat so largely of coarse vegetables. A hearty Irish laborer, with a stout hardworking wife and a table full of healthy children, will use up cabbages and turnips in a way to delight the heart of a gardener; and the atmosphere of a manufacturing town will evaporate a farmer's load of these vegetables as the sun dries up the morning mists.

To any one who is disposed to venture an acre or two in gardening, no better service can be done than to recommend him to read Peter Henderson's "Gardening for Profit," wherein are laid down precise rules for the management of every department of the business.

We have here only space to give a few practical hints which will be chiefly of use to farmers who propose to devote a portion of their time to the simpler kind of gardening.

It may be given as a general rule, that the only crops that it will pay the farmer to raise, in his market garden, are beets, cabbages (early and late), sweet corn, cucumbers, onions (rare-ripes), parsnips, radishes, spinach, and tomatoes.

The size, arrangement, and equipment of the garden.We will suppose a farmer to be about to embark in this business, and that he is willing to invest in it a capital of one thousand dollars. Of course the same general rules will apply for a more or less extensive operation. He should select two acres of light dry land (if he has it, and if not he should thoroughly underdrain it), if possible with an exposure to
the east or south. If it is sheltered from the north and west by an orchard or by other trees, so much the better.
The land may be more economically arranged if it lies in about a square body, and should be fenced on the north and west sides with a tight board fence six or eight feet high. A fence of the latter height, made in the best manner, of pine boards, capped with a spruce rail, will cost in the vicinity of New York about $\$ 200$ for 600 running feet. This fence should set close to the ground, so that the wind cannot draw under it, and it will have the effect of very materially modifying the climate, and enabling the growing of much earlier vegetables.

Close in the northwest corner he should then set up two parallel rows of hemlock boards, nailed to $2 x 3$ stakes, driven into the ground. The back line of boarding should be 12 inches high, parallel to the fence and three feet distant from it. The other row should be 8 inches high, parallel to and 6 feet and 2 inches distant from the first, outside measurement. Both to be 187 feet long, with boards to close up the ends, and the ground enclosed by them should be spaded and manured. This is the "cold frame," which is to be covered by 50 sashes, each 3 feet 9 inches wide by 6 feet $2 \frac{1}{2}$ inches long, having four rows of glass, each containing nine $8 \times 10$ lights set lengthwise across the space-the rails being ten inches apart. The sashes to be made of $1 \frac{3}{4}$ inch stuff and strengthened by a flat rod of iron ( 1 inch by $\frac{3}{10}$ inch) let in flush on the under side and screwed fast to the bars
and rails, across the middle of the sash. It is best to make the sashes in the best manner, as they are a very important part of the permanent stock in trade of the garden. They will cost, at an outside price, $\$ 250$.

The ground of the garden should be deeply ploughed and subsoiled in July or August, and if the weeds that grow upon it are likely to ripen their seeds, they should be mowed down late in the fall. Before winter sets in, the largest amount of horse manure that can be bought for $\$ 200$, delivered, should be spread upon the surface, and left exposed to the rain and melting snow of the winter.

About the middle of September, sow in a well-prepared seed-bed in an old garden, twelve ounces of the seed of Jersey Wakefield cabbage, and four ounces of Fottler's Improved Brunswick. At about the same time sow on three feet of one end of the cold frame, one ounce of black-seeded butter lettuce, and one ounce of early-curled Simpson lettuce, giving to each about nine square feet. These are to remain where they are sown during the winter. The cabbage plants will be large enough to transplant about six weeks from the time of sowing, when they are to be "pricked out" in the cold frame two inches apart each way, which will give about 800 plants to a sash. These plants should be well watered, and sprinkled with a light coating of air-slaked lime.

They will need to be protected by the glass until they are firmly rooted (the sashes being tilted up at the back to give them air whenever the sun is on them), and on frosty nights,
and they should be gradually accustomed to the cold air, so that they may be able to withstand the hard freezing that they will get in the winter; all through the winter they should have air whenever the frost is thawed from the under side of the glass, and on fine days the sashes should be stripped off from them altogether. The end where the lettuce plants are standing should have less air, and should have the protection at night of an old carpet thrown over the sash. Directly in front of the cold frame there should be a second frame made of exactly the same size and character. This should be filled with straw, leaves, or other rubbish which will keep it from freezing, and about the last of February or the first of March its covering should be removed and about three inches of well-rotted manure should be dug into it-not too deeply. The lettuce plants are now to be transplanted to this frame, at distances of six and a-half or seven inches each way (about seventy plants to a sash), and covered by the sashes which may now be taken entirely from the hardened cabbage plants. If light board shutters have been provided to cover the cabbages during severe storms, it will be better, but they will stand any amount of hardship after their winter's training. The lettuce plants should have plenty of air during fine weather (and some air whenever it is not freezing), should be abundantly watered if the season is dry, and should be forced by as much heat as can be given them without depriving them of air. They will be ready for market about the middle of May, when lettuce
usually sells in towns (not in the larger cities) for from 8c. to 12c. per head.

During the latter part of April, plant sixty three-inch pots with half a dozen seeds each of White Spine cucumber, and set them in a warm light room in the house. By the time the lettuce is sold off these will be sturdy plants, and they should be thinned to three in each pot. Now dig holes a foot deep, and a foot in diameter, at intervals of three feet in the lettuce frame, and fill them with very thoroughly rotted and rich compost, covering it with a little soil. On each of these plant the contents of a pot, without disturbing the roots of the plants, and cover closely with the sashes. Give a little air in the middle of the day, but cover close from 4 f.m. until 10 A.m., and during all chilly weather; water copiously, and uncover to all warm rains.

By the latter part of June the picking will commence (at from 5c. to 30c. each), and it may be continued as long as the price is not less than 1c. each. This crop is more uncertain and varying in its results than lettuce, but it usually pays well, and is very inexpensive.

Now let us sum up the probable income of 50 sashes, managed as directed above:-

$$
\begin{array}{lr}
35,000 \text { cabbage plants, at } \$ 10 \ldots \ldots \ldots . . . . & \$ 350 \\
3,500 \text { lettnces, at } 8 \mathrm{c} . \ldots \ldots \ldots \\
\text { Cucumbers (from } \$ 25 \text { to } \$ 100 \text { ), say.......... } & 280 \\
& \frac{50}{}
\end{array}
$$

This is earned with a small investment, and the labor is
mainly done in the fall and winter, when other work is slack; and it has the great advantage of coming in early, when there is a demand for ready money to pay for labor, \&c.

Five hundred tomato plants may be started in the kitchen window, or in a small hot-bed, and by the middle of April they may be pricked out in one end of the lettuce frame. . As early in May as the danger of frosts has passed, they should be set out at intervals of fifteen inches along the foot of the fence on the north and west sides of the field, to be trained up against it (tacked fast), and kept trimmed to single stems. At a height of six feet they should be pinched off and their growth kept close. They should be planted in a very rich soil, and well watered. They can hardly fail to produce early crops, and ought to sell for $\$ 75$ to $\$ 100$.

Now we come to the management of the field crops.
If we could only raise cabbages year after year on the same land, our business would be a very simple one. We might take two crops yearly (an early and a late one) of the most profitable and easily raised vegetable on our list.

But, unfortunately, one crop in two years is all we can reasonably hope for, as the "club-foot" will surely attack an immediately succeeding crop on the same ground, and our best plan is to arrange to grow as many cabbages as we safely can-making this point our constant aim-and to occupy the land as profitably as possible the rest of the time.

Therefore, the field should be divided into two equal parts,
one side being prepared for cabbages and the other for such other crops as will not interfere with the growth of cab-. bages the next year.

The first operation is the preparation of the ground for early cabbages, for which we devote a space of about one acre.

The manure which was spread in the fall should be lightly ploughed in-not deep enough to turn up the old sod -and a thousand pounds of Peruvian guano, two thousand pounds of fish guano, or fifteen hundred pounds of bonedust, should be evenly sown over the ground, and thoroughly harrowed in. Either of these manures will cost about $\$ 40$. As early as it is possible to get the ground into proper condition, as described above, the cabbage plants in the cold frame should be set out, in rows two feet apart, and about 16 inches apart in the rows. It will probably be best to plant three-fourths of the piece with the Jersey Wakefield, and the remainder with the Brunswick, which will begin to be fit for market at about the time when the Wakefield is all sold.

This amount of land will receive about 15,000 plants, leaving about 20,000 plants to be sold from the frame. If the value of cold frame plants is understood in the vicinity, they will be readily taken up at $\$ 10$ per thousand.

If there is a good summer market for lettuce, the Early Curled Simpson may be set out between the rows of cabbage, when it will grow to a marketable size before the whole
ground will be required by the main crop. In the neighborhood of small towns this will not be worth while, as there is but little demand for lettuce after June 1st.
As soon as the cabbages are planted-and this may be done even so early as in March, if the weather is fine-the other half of the garden should be manured and prepared in the same manner, and planted with beets, onions, parsnips, spinach, and radishes; the first four in about equal proportions, and in the following manner:-

Beets (of the Bassano and the early turnip-rooted blood variety) should be very thickly planted in rows 18 inches apart-thickly, because the early frosts may cut off a part of the crop-and when they are fairly up, they should be singled out to intervals of about 4 inches in the rows.
The onions should be "sets" raised the previous year. These may usually be bought for from $\$ 6$ to $\$ 10$ per bushel, according to size-the smallest bearing the highest price. They should be set in rows 9 inches apart, and at intervals of 3 inches in the rows, being firmly pressed down in the bottom, of the line made by the marker. Every seventh row should be omitted to leave room to walk among the crop, and the sets should be entirely covered by raking the beds evenly over.

Onions raised from the seed are rather a farm than a garden crop, and will not pay to raise on land so expensively manured as that under consideration.

Onions raised from "sets" are called Rare Ripes, and
they always meet a ready sale in any market where there is a market for any vegetables. Still, as it is considerable work to tie them, it will be best not to raise more than onequarter of an acre of them.

Parsnips should be planted early in May on well prepared (deeply loosened) ground, in rows 27 inches apart, the seed being strewn thickly in the rows, and the plants finally thinned to intervals of six inches. The reason for putting the rows so wide asunder is that it enables us to cultivate the crop with the horse-hoe at a time when labor can be ill spared for hand-hoeing.

Spinach.-This crop, the first year, must be planted in the spring; by planting very early, on ground so heavily manured, it will be in market ahead of green peas, and will bring a good price, but after these are plenty, it can hardly be sold at any price. The cultivation of this crop is extremely simple. The seeds are sown pretty thickly (say 10 lbs. per acre) in rows about 12 or 14 inches apart, and the land kept clean until it is large enough to cut.

For all subsequent years, spinach should be planted about September 15th, on the ground from which the Brunswick cabbage has been taken, this being first well manured with animal manure. It will require (above the latitude of New York) a light covering of seaweed, leaves, or straw during winter. Coming very early into market, it often brings four dollars a barrel.

Radishes are a stolen crop, and, to a limited extent, they
may be very profitably grown. It is best to raise both the long scarlet and the short top turnip-rooted varieties-the former for common trade, and the latter for those who are more choice in their taste, the proportion of each being regulated according to the character of the market.

The seed may be sown, rather thinly, with a seed drill between the rows of beets. No cultivation is needed. The seed is the only cost except the preparation for market, and this need be applied only to so much as there is a sale for; the rest can be simply cut out with a push hoe, before the beets will require the whole ground.

We have now provided for the planting of all the land, and will need to commence promptly to use the hoes, of which at least two should be kept going incessantly until the crops are all firmly established, and are able to hold their own against weeds. In fact, at no time during the growth of the crops, until they are too large to be worked among without injury, should weeds be allowed to grow at all. If they once get started so that there must be a fight to get rid of them, we may as well say good-bye to all hope of profit, for they will require more labor than it will be pleasant to pay for, and the crops will be materially injured by them. If, on the other hand, every foot of the land be lightly hoed over (or even raked with a light iron rake until it becomes too hard) once a week, there will be no weeds to kill, and the plants themselves will be sufficiently benefited by the operation to pay the cost.

Harvesting the crops, and preparing them for market.
The first sales will be of radishes and spinach. Long radishes are pulled, and tied in bunches, and then thrown into water. In a few minutes they are taken out by the tops, laid against a board which stands sloping into the water, and there washed clean with a wisp-broom.

The round radishes grow at the top of the ground, and so little dirt adheres to them that they only require to be soaked for a few minutes and then shaken in the water.

Spinach is simply cut off at the top of the root and packed (dry) in barrels- 40 lbs . being a barrel. It is the easiest of all the crops, except cabbages, to prepare for market.
Parsnips are, as every farmer knows, either left in the ground until spring, or taken up in the fall and stored like any other roots.
Beets are pulled when about half grown; the outside leaves torn off so as to leave only enough to hold them by securely, the roots washed clean, and tied in bunches of four or five, according to the varying custom of differeat markets.

Onions (rare-ripes) are pulled when the bulb has a diameter of three-quarters of an inch or thereabouts-the larger the better-and, after the removal of the dead skin, are tied in bunches of five or ten. For the New York market, they must be washed. For Eastern markets this is not necessary. It is quite an addition to the cost of preparation.

Oabbages (the early sorts) are simply cut off near the
ground, with nearly all their leaves, and, if they are to be shipped, are packed in barrels or crockery-crates. They will stand a good deal of rough treatment.

Prices of Early Vegetables.-On this subject but little can be said that will be a criterion for different localities, except that in nearly all of the smaller towns they sell for from 50 to 100 per cent. above the New York quotations. The cause of this anomalons condition is that these towns are nearly always supplied with early vegetables from the larger cities.

Probably the following may be taken as a fair average of prices in towns of from 10,000 to 50,000 inhabitants, during a series of years:-

Cabbages, 8 cents each.
Onions (rare-ripes), 50 cents per dozen bunches of five each.

Beets, 75 cents per dozen bunches of five each.
Radishes, 30 cents per dozen bunches of about ten each. Spinach, $\$ 1.50$ per barrel.
Second Crops.-We have now cleared all of the land except that which is occupied by the parsnips. This produces but one crop during the season, and we have not very much more to expect from the use of the land. Our profit must have come mainly from the early crops. Still, enough may be expected to make a fair return for the labor of cultivation, and for the use of the land and manure, and the land needs to be cultivated for its own sake. The gardeners about the 19*
large cities, having a market for everything green that they can raise during the whole year, and for some crops, such as celery and salsify, which meet with no sale in small places, find their second crops very profitable; but, in our case, the chances are that we must be content with small returns from this source.

We are debarred from raising rutabagas, or French turnips, and late cabbages, for the reason that these cannot follow our crop of cabbages, and if they were made to follow any of the other crops they would injure the land for the growth of early cabbages the next year.

Celery is a good crop for land that is in good condition, but it is hardly worth raising for small markets.

Horseradish, sweet herbs, mangel wurzel, sweet corn, and common turnips are about the only safe reliance. Of these, the first is the most profitable, as it finds a ready sale among the pickle-makers in cities. Concerning its cultivation, the following is copied from an article furnished by Peter Henderson for the Report of the Agricultural Department for 1865 :-
"The culture is very simple, and so far very profitable. The plants or sets used are the pieces broken off from the main root in its preparation for market. These are cut into lengths of about six inches, and are from one-quarter to onehalf inch in diameter. They are planted between the rows of cabhage or canliflower as soon as these crops are planted in th. spring, and abont the same distance apart between
the plants. The set or root is planted perpendicularly, three inches under the surface. There is no danger in planting the sets thus deep, for horseradish is particularly tenacious of life, and will start and push through the soil even if planted much deeper. The motive in planting it under the surface is to delay its starting, so as not to interfere with the cabbage crop, which may close over it without any injury whatever to the horseradish. It sometimes happens, however, either from planting too near the surface, or by the sets being very strong, that the horseradish grows so strongly as to interfere seriously with the cabbage crop. In such cases it must be cut off by the hoe, and this will not injure it in the slightest degree. We have often had to hoe it off twice before the cabbage crop was ready. It will be borne in mind that it is the root only of this crop that is wanted, and that, being grown mostly in the late summer and fall months, the removal of the leaves in June, or July even, does not in any way affect the crop.
"As soon as the cabbages have been cut off the stumps are dug up, and the ground deeply hoed, so as to encourage the growth of the horseradish crop. This rarely requires to be done more than once, the rapid growth of the leaves smothering all weeds. It attains its full growth of root by the end of October, when it may be dug up; but, being an entirely hardy plant, we usually defer lifting it until all our more tender vegetables are secured, so that the time of digging it up is usually in November and December. It is then placed
in pits adjacent to the vegetable house, so that it can be got at conveniently, and trimmed during leisure time in winter. Its preparation for market is very simple, being merely trimming off the small roots (which are kept for next season's planting), washing, by rinsing them around in a large tub; weighing-for it is all sold by weight-and packing in barrels.
"Thc average weight per acre is four tons, and for the past five years it has sold for $\$ 200$ per ton, or $\$ 800$ per acre. During March of last year it sold as high as $\$ 250$ per ton. I have always considered it the most safe and profitable crop of our gardens."

Whether these results could be obtained if the production of horseradish were largely increased, it is impossible to say; but there is no doubt that its cultivation will remain fairly remunerative.

Sweet herbs are a safe crop to raise, even at a distance from market, as they can be dried and stowed away in a loft until the leisure time of winter allows them to be bunched and packed for shipment. Henderson estimates the average yield per acre at $\$ 500$.

The varieties usually grown for commercial purposes are thyme, sage, summer savory, and sweet marjoram. The cultivation of all of these is precisely the same.

The plants are raised from seed sown in April in a very fine and rich seed-bed, and they are planted out in the field, at any time after they are large enough up to the last of July,
in rows about 12 inches apart, and at somewhat less than this distance in the row. They should be kept free from weeds until they cover the ground. At this stage each alternate row 'should be cut out, after which the crop will spread and occupy the whole ground again, and in very favorable seasons it will sometimes close up after alternate rows have been taken out a second time.

Mangel-wurzel (or field beet) is a safe crop for the farmer to raise, inasmuch as it is the best of all the roots for cattle food; and, in rich ground, it produces enormously, while it does not interfere with the growth of cabbages the following year.

For a second crop the plants should be raised from seed planted very early in May, and it should be set out at distances of 30 inches by 15 inches. It is a perfectly safe and easy crop to transplant, if care be only taken not to attempt the operation until the roots are at least as thick as the little finger.

The distances recommended as the best ones at which to set the plants are larger than are usual in this country, but on land so rich as that under consideration, the leaves will cover the whole space, and the roots will grow to an enormous size, giving a larger yield than if more thickly set out.

Sweet corn is a fair crop to raise for market, but its cultivation is so well understood by all that it is only necessary to say here that it should follow the spinach and the onions, which are the first out of the ground in June.

Common turnips are the porest paying of all the articles recominended for a second crop, but they are also raised with very little trouble, and as the seed may be sown at any time in July, they are often available to follow the last removed of the first crops, except the Brunswick cabbages, and these will not usually be cleared off in time to prepare the ground for anything but spinach for the following spring.

Profts.-This is hardly a safe subject for estimate; so much depends on the land, the situation, the man, and the market, that one will gain where another would lose, and the ratio of profits will vary from zero to an almost fabulous amount. . However, under any favorable circumstances, a man tolerably well qualified for the business, provided he will use manure with what he may think a wasteful hand, might expect about the results of the following table, for an average of ten years.*
Expenses:-
Rent and taxes, say..................... $\$ 30$,
Interest on cost of improvements and tools, say on $\$ 800$, at 7 per cent............... 56
Wear and tear............................. 100
Manure (2 acres)............. ............ 160
Labor (equal to two men for the whole year) 1000
Seeds and plants.......................... 50
Total. . . . . . . . . . . . . . $\$ 1,396$

* The first year, the outlay for manure will be more, and, owing to the crude condition of the soil, the returns will be less.

Receipts:-
From use of 50 sashes, as per previous estimate............................ $\$ 68000$
From 450 tomato vines on the fences (say 25 c . each)..................... 11250
1 acre, 10,000 cabbages at $8 \mathrm{c} . . . . . .$. . 80000
3 tons horseradish ( 2 d crop)........... 50000
$\frac{1}{4}$ acre beets, 300 dozen bunches at $75 \mathrm{c} . \quad 22500$
$\frac{1}{4}$ " onions, 500 dozen bunches at $50 \mathrm{c} . \quad 25000$
$\frac{1}{4}$ " spinach, 50 barrels, at $\$ 2 \ldots .$. . 10000
$\frac{1}{4}$ " parsnips, 200 bushels at 75 c .... 15000
Radishes from among beets and cab-
bages, say........................... 10000
$\frac{1}{4}$ acre sweet herbs ( 2 d crop).......... 10000
$\frac{1}{4}$ " sweet corn ( 2 d crop)........... 2500
4 " mangel-wurzel, say 250 bushels at 40 c .

10000
4 " common turnips.............. 2500

Of course there are chances that the profits will be much less than the above amount, but there are at least equal chances that they will greatly exceed it.

## STEAM CULTIVATION.

For many years it has been a dream of American inventors to devise some means by which a locomotive steamengine could be made to take the place of the team in plonghing.

Thus far, although some of the devices have been made to work tolerably well, none of them have achieved such success as to commend them to general use.

It has fallen to the lot of England to make the first application of steam to ploughing that has been so decidedly successful as to come into very general use. They have abandoned the idea of making the steam-engine travel at the front of the plough, and place it on one of the headlands, broadside to its work, an "anchor" standing opposite to it on the other side of the field.

Under the engine there is a horizontal windlass, five feet in diameter, and a similar windlass is attached to the anchor. A steel wire rope passes around these two windlasses, its ends being fastened to the carriage to which the ploughs are suspended, and which forms a link in the endless chain.

The windlass under the engine is so arranged that it clasps the rope firmly on those parts where its pulling force is exerted, and lets go as the rope leaves it in its movement toward the anchor.



The ploughs are set in "gangs" on a tilting frame. One end of the frame carries right hand, and the other end left hand ploughs. The ploughman sits on the end of the frame which is "in work," and gnides the carriage by means of a steering wheel. His weight holds the end on which he sits down to its work, and tilts the other end up, so that its ploughs are in the air. If the width of the field is considerable, "rope porters" or guiding wheels keep the rope from running on the ground, and thus save power and prevent wear and tear.

The ploughs being ready to commence their work at the side of the field next to the engine, this is set in motion and the ploughs are drawn toward the anchor; when they arrive at the anchor side of the field, the plonghman changes his seat to the other end of the frame, and the engine is reversed, drawing the ploughs toward it; and in this manner they are moved back and forth until the whole length of the field is ploughed. They are then moved to the ends of the headlands and these are ploughed.

The engine is a locomotive, and advances along the headland so as to be always opposite its work, and the anchor is moved at the pleasure of the operator, by the action of its windlass.
The ploughs are used in all cases where there is a sod or a long stubble to be turned under, but fallow land is cultivated by the substitution of long-toothed grubbers, which work at a greater depth.

The construction of the steam ploughing apparatus, and its mode of operation, are shown in the illustrations which accompany this article.

Among the advantages claimed for it are the following:-

1. Greater rapidity of work, allowing land to be speedily prepared for the crop while in the proper condition, thus greatly lessening the danger that planting will be delayed by rains.
2. Cheapness of work-the cost (in England) being reduced from about $\$ 5$ per acre, the cost with horses, to about $\$ 1.25$, the cost with the steam apparatus.
3. Improved condition of the land.
4. Better drainage.
5. Greater activity. in the performance of all the work of the farm.

Concerning rapidity of work, it may be stated that a 14-horse engine set will plough from 9 to 12 acres per day, and do the work better (deeper) than it can possibly be done with any ordinary farm team.

At the Annual Show of the Royal Agricultural Society at Bury St. Edmonds, in 1867, Fowler's cultivator smashed up light stubble-land at the rate of 50 acres per day of 10 hours, and did the work at a cost of about 25 c . per acre, including all charges for fuel, wear and tear, and attendance.

Anything which places it in the power of the farmer to prepare his land for planting at so rapid a rate as even 8
acres per day, must do much to free him from the annoyance of frequent delays from wet weather at a time when it is important that everything proceed rapidly.

The comparative cost of cultivation, when done by steam instead of horses, is, of course, dependent on circumstances. On small farms, and for use in small fields of irregular shape, the cost of maintaining an expensive set of machinery, and the time lost in moving from one field to another, would more than make up for any saving in the actual cost of the work. On farms having 250 acres of land under the plough, and having fow fields of less than 10 acres, the saving in cost of work would be very great.

This saving of cost, however, is of minor consequence as compared with the other advantages of steam cultivation.

The improved condition of the land, including its better drainage, is the great argument in favor of the process.

The movement of the ploughs is nearly twice as rapid as that of the horse-plough, and the furrow, instead of simply being turned over, is thrown from the mould-board so rapidly that it is much more thoronghly pulverized. As the furrows are all laid in one direction, there are no dead furrows left when the work is done. In the ordinary ploughing of an acre of land it receives 350,000 foot-marks per acre, one-half of these being upon the earth at the bottom of the furrows, which in time becomes compacted to an almost water-tight condition. In steam ploughing, the land is not touched by a hoof, and when (as is often the case) all the operations of
harrowing, rolling, and seed-drilling are done by steam, it is left in a condition most favorable to the growth of the crop, and to the rapid subsidence of water of rains-assuming that the land is either naturally or artificially under-drained.

Not the least benefit of steam cultivation (accompanied by the use of the steam-engine for threshing, grinding, fod-der-cutting, \&c.) is found in the greater activity which is imparted to all the business of the farm. The same difference, but in less marked degree, is to be observed in the use of horses instead of oxen.

The motive power sets the time of the whole establishment, and as the use of oxen leads to a slow, drawling, listless habit, so steam gives an activity and bustle to everything which makes wages and board tell with better effect on the year's performances.

In the Journal of the Royal Agricultural Society, for 1867, there is a very elaborate report of the results of the examinations of the committees which had been appointed "to inquire into the results of steam cultivation in use by 135 farmers and stock companies in England.".

The following are some of the conclusions at which they arrived :-
"In nearly all the cases reported it will be seen that the expenses of cultivation are very much reduced, and yet that a larger amount of produce is. said to have been realized.
"Not only are the operations themselves better done, quicker done, less expensively done, but all kindred and col-
lateral movements have had imparted to them a speed and 'whirr' characteristic of stean; neen acquire the habit of doing the day's work in the day, and of not leaving it for the morrow. The day's labor, top, ou a steam farm represents more work with less distress to the physical frame of the laborer, and better remuneration. Steam is working a revolution-slightly manifested as yet, so that we can only speak of tendencies in farm practice, and in the character of the rural population. They are being trained for the era of machinery in agriculture.
"In most cases an increase of produce, in some instances as much as 8 bushels per acre (of wheat), has resulted from steam cultivation.
"We may state as our general conclusion that steam tackle, whether of Fowler, Howard, Smith, or other makers, is now so far perfected and settled in form and details, that it may be classed among old-established, standard farm machinery, and no longer among the novelties of the day.
"We find, as the result of experience, that which we already anticipated theoretically, viz., that the increased depth of surface and the absence of pressure greatly increaso the absorbing powers of the soil, and consequently assist the action of the drains.
"Mr. Wm. Smith, of Woolston, England, was one of the pioneers of steam cultivation, and is still one of its most zealous advocates. A short time ago he extended an invitation to all who were interested in the subject to visit his
farm and witness the operation of his tackle, and to see its effect. He communicates to a London paper the substance of the statements he made to his visitors, and from this I extract the following, as serving to illustrate the completeness with which the system has been tried and found satis. factory :-
"You must see that these fields are not only heary clay, but hilly and uneven, and the face of them shows that they are well drained as well as well cultivated.
"This field, No. 3, on which you stand, together with No. 2, through which you have passed, and No. 1 (light land), which I will hereafter show you, contain 32 acres; and were smashed by steam-power on the 31st of August, and the 1st, 2d, and 3d of September, at the following cost:-

| Labor. | £3 140 |
| :---: | :---: |
| Coal | 1120 |
| Oil. | 26 |
| Interest on money, and wear and tear | 296 |
|  | £7 1800 |

Or 4s. 9d. per acre (about \$1.15).

"Now I will let you know what the operations and cost of seed-beds have been on these four fields under steam culture for 14 years, taking those on field No. 3 to represent the lot:-
" 10 steam-power smashings, 2 ridgings and subsoilings
by steam-power, 2 cultivatings and drillings at one operation, each by steam-power; 1 cross cultivating by stean-power, 1 cross cultivating and seeding at one operation by steampower, 7 horse cultivatings, 1 horse subsoiling, 1 ridge ploughing by horses, The total cost of these operations has been $£ 6.11 .9$, or $9 s .5 d$. per acre as the average cost of a seedbed, exclusive of planting or drilling, except those planted by steam-power.
"The cropping on No. 3 during that period has been 1 of peas, 2 of barley, 5 of beans, 5 of wheat, and 1 of Swedes.
"The average yearly produce under steam culture has been, on these four fields, quite 14 bushels per acre more than it had been under horse culture. * * * * * * * * * * *
"Now let us look into the working of the tackle since the 5 th of October last. On that day I started it on No. 4 (heavy land), 10 acres, ridging and subsoiling it for beans. It was finished on the 6 th at 4.10 P.m. The depth of work is 9 inches; the consumption of coal 1 ton; and the pressure on the engine 60 lbs .
"We then shifted the tackle nearly half a mile to No. 1 (heavy laud), 8 acres, and we finished that field at 12.15 P.m. on the 8th. Depth of work 10 inches ; consumption of coal 16 cwt . ; pressure on the engine 65 lbs .
"We then shifted the tackle a quarter of a mile to No. 3 (light land, part 1), 5 acres, and finished it on the 9th at 12.20 P.m. Depth of work 10 inches; consumption of coal 9 cwt ; pressure on engine 60 lbs .
"We then shifted the tackle a mile to No. 6 (light land), 14 acres, working all day on the 10th (the 11th was Sunday), worling again all day on the 12th, and we finished on the 13 th at 8.40 A.m. Depth of work 11 inches; consumption of coal 29 cwt ; pressure on engine 65 lbs .
"We then shifted the tackle more than a mile to No. 3 (light land, part 2), 6 acres, and finished it on the 14th at 11.50 A.m. Depth of work 10 inches; consumption of coal 10 cwt ; pressure on engine 60 lbs.
"We then shifted the tackle to where it now stands, on No. 4 (light land), for you to see it at work. * * * * * * * * * * *
"It is not a set of new-fangled tackle, got up for the purpose of racing, for the common portable engine has done 10 years' hard work. It has done, in addition to my ploughing, a lot of threshing and grinding, yet it is in capital trim. The cost of repairs has been but a mere trifle.
"The windlass has had 10 years' work. In 1858 it did 55 acres for the late Prince Consort, on the Flemish farm, Windsor, and I have worked it on my farm ever since. * * * * * * * * * * $\quad *$
"I have worked the rope 7 years. The first year it got out several times. At one or other of the splices it pulls in two; indeed it has not, during these 9 days' work, gone through a day without a break; therefore the men have had the mending of the ropes to do as well as the ridging and subsoiling.
" My average quantity of work per day is much greater,
and my average consumption of coal per acre is much less, than it has ever been before. This is mainly due to my land having been deeply worked so many times before.
"The sum total of all this evidence proves plainly that the Woolston system of applying steam-power to the cultivation of the soil gives clean dress and cheap seed-beds, and that fancy tackle is not needed on show days. The boy that'you see working the implement is only 14 years old. He has done all my work this year, and well too. The work is before you to speak for itself."

It is found, for use in neighborhoods where the farms are small, that it is the best plan to form joint-stock companies to own and operate the tackle-hiring it out by the day or by the acre, and giving the precedence to stockholders. This plan would work the best among the smaller farmers of our Eastern States-but at the West, where the proprietorships are larger, it will be most advantageous to have the apparatus, with its engine to do other work, attached to the farm.

It is sometimes objected that much of the land in this country is too rough and too stony for the steam-plough ever to gain a foothold. The same objection was made twenty years ago to the use of the mowing machine in New England, and there is every reason to suppose that when the advantages of the steam-plough are once fully realized, even the hillsides of Vermont will smile under its influence.

## nouse Painting.

The following receipts and directions are condensed from a. practical English work on the art of house painting. They are principally designed for the inexperienced and those who, living at a distance from cities, have great diffculty in obtaining first-class workmen.
To make the work satisfactory, it is very necessary for the. workman to have very clean all the vessels, brushes, and cans he may reqnire in the course of his work, such as the various paints, pots, or vessels in which he mixes or from which he uses his colors. These are sometimes bought at the shops, handsomely made of stont tin, and such are easily kept clean, and save their expense in color, which is readily brushed down their smooth sides. He will also require a marblo slab and mnller, to grind the finer colors used in painting. Sometimes a small cast-iron mill is uscful not only to grind colors, but to pass the tinted color through, so that it may be more thoroughly mixed.
It is presumed the workman will know what brushes he will require, according to the work he has in hand.
In preparing to paint a good dwelling, after having obtained the necessary colors and brushes, see that you have a few pounds of good pumice stone, a quire or two of assorted sand paper, to smooth the inequalities in the work; some
twenty ponnds of putty, to stop up after the first coat in every part of the louse; a suffieiency of fine slaked lime, and a proper number of large and small vessels, to mix the colors in and use it from; a few pounds of soaked glue, \&c.

If the wood-work be new, and no wall work required, you will go over it carefully with a small brush, and some of the glue size, eolored with red lead, covering what knots and stains may appear in the wood, after which the priming coat of almost all oil, and good white lead, tinted with Indian red, should be evenly brushed over the work; and, as soon as dry, the putty knife and putty should follow, to stop all the cracks and nail holes. Then should follow the second coat, with a little spirits of turpentine in the oil, and the color slightly tinged with blue blaek. This is generally thought sufficient for the attic and third stories. But the rest of the house is usually finished with old ground white lead, thinned with spirits of tnrpentinc. The roof, if covered with tin, should be painted once in three years. There are many different methods in use. Some paint with raw oil, dry Spanish brown and a little red lead, to dry it, for fear of a rain; others, with Spanish brown, more red lead, and half whale oil with the linseed oil ; others use fellow ochre and black, mixed in the same oils; others use a roof paint, made by boiling paint skins in whale oil, and carcfully straining them while warm, reserving the remaining skins, to stop the leaks around chimneys and dormer windows. This last mentioned paint is probably
serviceable from its elasticity. In the cuuntry, many paint their roofs and out-buildings in the same way, using sometimes Venetian red from its brightness.

Many complaints are continually made that white lead, and colors composed thereof, do not endure, and are quickly beaten off by exposure to the sun and rain. This difficulty occurs as much from the manner of using the paint as from its quality. As this oceurs in outside work, it is to be attributed, first, to the condition of the work to be painted, being generally in such a state as to absorb the oil from the first coat, thereby leaving it in a dusty state, and liable to be washed of by the first rain. This can be guarded against, only by filling the old work, in painting two thin coats over it, one upon the other, as soon as dry; and finishing it with one thicker coat, to protect it and shed the rain. A fourth coat, if the immediate expense is not heeded, will repay its cost in additional service and beauty.

The white lead can be procured of any requisite quality at the color stores. It is thought that the best article is the most economical, as it works ont with more ease, and repays the difference of cost in its appearance. Linseed oil is also better for having due age, for the same reasons as the white lead, working with softness and advantage after parting with the water which is generally combined with new oil.

The quality and fineness of the white lead used adds materially to the work, and that which is well ground, and
has such mellowness from age as will cause it to work smoothly under the brush, in connection with good linseed oil, will ccrtainly repay any reasonable additional cost. The first coats should always be mixed with clear linseed oil; the fourth coat may be used with boiled oil and one-quarter part spirits of turpentine.

Putty is best purchased at a good color store, where you can depend upon its being made of good dry whitening and linseed oil. It should be carefully and freely nsed after the work has had one coat of paint, for the fresh paint holds the putty very firmly.

Harmony of Colors.-Red looks well with blacks, whites, or yellows. Blues harmonize with whites and yellows. Greens, with whites, black or yellow. Gold, with blacks or browns. White appears well with any color. Purple, pink and white, \&c., \&c.

## MIXING PAINTS.

A Beautiful White Paint.-For inside work, which ceases to smell, and drics in a few hours. Add one pound of fraukincense to two quarts of spirits of turpentine; dissolve it over a clear fire, strain it, and bottle it for use; then add one pint of this mixture to four pints of bleached linseed oil, shake them well together, grind white lead in spirits of turpentine, and strain it, then add sufficient of the lead to make it proper for painting ; if too thick in using,
thin with turpentine, it being suitable for the best internai work on account of its superiority and expense.

For a Pure White Paint.-Nut oil is the bost; if linsced oil is used, add one-third of turpentine.

To Mix Common White Paint.-Mix or grind white lead in linseed oil to the consistency of paste, add turpentine in the proportion of one quart to a gallon of oil ; but these proportions must be varied according to circumstances. Remember to strain your color for the better sorts of work. If the work is exposed to the sun, use more turpentine for the ground color to prevent its blistering.

For Knotting.-Mix white or read lead powder in strong glue size and apply it warm.

Common Flesh Color.-Stain your white lead with red lead, and mix with oil and turps.

Fine Flesh Color.-Is composed of white lead, lake and vermilion.

A Beautiful Color for Carriages, \&c.-Mix carmine lake with black japan.

Cream Color.-This is a mixture of chrome yellow, tho best English Venetian red, white lead, and red lead, in oil.

Pearl Gray.-White lead, with equal portions of Prussian blue and lampblack, mix with oil and turps.

Fawn Color.-Grind some burnt and raw terra sienna very fine. Two or three pounds of this is sufficient to stain
white lead for a large building. This color is of a superior shade, and very excellent for inside work.

Blue.-Grind Prussian bluc in turps; other bluo very fine in linseed oil, and mix it with white paint to tho tint required.

Buff.-This is a mixture of French yellow, chrome yellow and whito lead, tinged with a little Venctian red, oil and turps.

Straw.-A mixture of chrome yellow and white lead; oil and turps.

Drab.-Raw and burnt umber and white lead, with a little Venctian red, linseed oil and turps. Another.-Burnt umber and white lead, with a little Venctian red, oil and turps, as beforo.

Steel.-Mix white lead, Prussian blue, fine lake and verdigris, in such proportions as to produce the required color.

Purple.-White lead, Prussian blue and vermilion, or lake, with oil and turps.

Violet.-Is composed of vermilion, mixed with blueblack, and a little white.

French Gray.-Whito lead and Prussian blue, tinged with vermilion; and for the last coat substitute carmine for the vermilion. Mix with oil and turps.

Silver.-Use white lead, indigo, and a small portion of blue-black, as the slade may require.

Gold.-Mix Naples yellow or patent yellow with a small quantity of orange chrome and a little Spanish white.

Dark Chestnut.-Mix red ochre and blaek. Use yellow ochre when you require to lighten the color, in oil.

Salmon.-White lead. tinged with the best English Venetian red, oil and turps.

Peach Blossom.-White lead, tinged with orpiment; mixed with oil and turps.

Drab.-White lead with a little Prussian blue and French ycllow, linsced oil and turps. Another.-White lead, with a little French yellow and lamp-black, linseed oil and turps. Another.-White lead with a little chrome green and blneblack.

Lead.-This is a mixture of lamp-black and white lead, with a little litharge.

Chocolate.-Mix lamp-black and Venctian red with a little red lead, or litharge, to harden the color and give a drying quality. The colors must be gronnd, and mixed with boiled oil and a little torps.

Dark Red, for Common Purposes.-Mix English Venetian red in boiled oil with a little red lead and litharge, to give a drying quality.

Orange.-Mix red lead and French yellow with linseed oil and turps, or use deep chrome yellow.

Bright Yellow for Floors, \&c.-White lead and linseed oil, mixed with some French yellow, and a little chrome
yellow to brighten it ; some red lead, burnt white vitriod and litharge added to give it a very drying quality. This color mixed with equal parts of boiled oil and turpentine, and used very thin.

Dark Yellow.-Mix French yellow in boiled oil, adding to it a little red lead and litharge, to give the paint a drying quality.

Light Yellow.-This is a mixture of French yellow, chrome yellow and white lead, with oil and turps. Another. -French yollow, white lead, and red lead. Another.Grind raw terra sienna in turps and linseed oil ; mix with white lead. If the color is required of a warmer cast, add a little burnt terra sienna ground in turps.

Olive Green.-A suitable, cheap, and handsome color for ontside work, such as doors, carts, wagons, \&c.
Grind separately Prussian blue and French yellow in boiled oil, then mix to the tint required with a little burnt white vitriol to act as a drier. Another.-Black and blne mixed with yellow, in such quantities as to obtain the colors or shades required. For distemper, use indigo and yellow pink mixed with whiting or white lead powder. Another.This is a mixture of Prussian blue, French yellow, a small portion of Turkey umber, and a little burnt vitriol. Ground the same way. Another, in oil.-Mix Prussian blue and chrome yellow. Grind the same. Another shade.-A mixture of Prussian blue and French yellow, with a small

Chantity of white lead and Turkey umber and burnt white vitriol. Grind the same.

Light Green.-White mixed with verdigris. A variety of shades may be obtained by using blue and yellow with white lead.

Grass Green.-Yellow mixed with verdigris. Another. -Mix one pound of verdigris with two pounds of white lead. Walnut oil is the best for this purpose.

Invisible Green, for outside work.-Mix lamp-black znd French yellow, with burnt white vitriol. These eolors mix in boiled oil. Burnt vitriol is the best drier for greens, as it is powerful and colorless, and eonsequently will not injure the eolor.

To Paint a Bronze.-Grind good black with chrome yellow and boiled oil; apply it with a brush, and when nearly dry use the bronze powder at ecrtain parts and the edges also; the effect will be a brassy hue.

A Good Imitation of Gold.-Mix white lead, ehrome yellow, and burnt sienna, until the proper shade is obtained.

Tar Paint for Fences, Roofs, \&c.-Common tar mixed with whiting. Venctian red or French yellow, aceording to the color required. This should be warmed in a large iron kettle in the open air, and applied with a large paint-ing-brush. It is an excellent preservative of the wood, and looks well for rough work.

Paint Driers.-Litharge.-This is a useful drier, and
may be used in all kinds of paints, except greens and very delicate colors. White Vitriol or Copperas.-This turns into water, especially when used in black paints; and is almost useless for any color till the water of crystallization is evaporated, and then it becomes a powerful drier, and may be used ior every delicate color, as it is perfectly transparent; but when used in its raw state in white paint, has the effect of turning it ycllow. Sugar of Lead.-This is a very useful and transparent drier, not so powerful as white vitriol, but it may be used with it to advantage.

Milk Paint for In-door Work.-The quantity for one hundred square fect:-One quart of skimmed milk, three ounces of lime, two ounces of linsecd or poppy oil, one pound and a half of Spanish white or whiting. Put the lime into a clean bucket, add sufficient of the milk to slake the lime, add the oil a few drops at a time, stirring the mixture with a flat stick till the whole of the oil is ineorporated in the mass; then add the remainder of the milk, and afterwards the Spanish white or whiting, finely powdered, and sifted gently over the mixture by degrecs. Curded milk will do for the purpose, but it must not be sour. One coat of this will do for ceilings and staircases in general ; two coats or more for new wood. Where color is required, you may use powdered umber, ochres, chromes, greens, blucs, pinks, \&c., \&c., ground in milk. For particnlar work, strain the color through a hair sieve.

Lime Whitewash.-Lime whitewash is made from lime
well slaked. Dissolve two pounds and a half of alum in boiling water, and add it to every pailful of whitewash. Lime whitewash should be nsed very thin, and when it is sufficiently bound on the wall by means of alum, two thin coats will cover the work better; this may be used for the first coat, thinned with water. Most whitewashers apply their wash too thick, and do not mix a proportionate quantity of alum to bind it, consequently the operation of the brush rubs off the first coat in various parts and leaves an nneven surface, and the original smooth surface of the wall is entirely destroyed.

Italian Marble.-This looks bold, and is well adapted for columns, \&c., and is easy to imitate. The gronnd a light buff. For the graining colors, prepare a rich, warm buff, made in the following manner : Mix stiff in boiled oil white lead and good stone ochre, and tinge with vermilion, then grind some burnt terra sienna very fine in burnt oil, and put it into another pot; mix some pare white stiff in oil, and keep this separate. Thin these colors with tur pentine, have ready a brash for the buff, and another for the terra sicnna. Proceed to work as follows: Take the brash intended for the buff moderately full of color, and dab it on freely and carcfully in different patches, some of them larger than others, and varying them as mneh as possible. When these are laid on, take the other brush and fill in with the terra sienna the spaces between; as soon as this is done, take a dry duster or softener and blend the
edges together, making it appear as soft as possible. Proceed in this manner till the whole is finished, then take a hair pencil and draw a few thin white veins over the work, varyiug them as mneh as is necessary; take another pencil for the terra sionna, and run a few thin lines intermixing with the whole; varnish when dry.

To Imitate Granite.-For the ground color, stain your white lead to a light lead color, with lamp-black and a littlo rose-pink. Throw on black spots with a graniting machine, a pale red, and fill up with white a little before the ground is dry.
A Cheap Oak Varnish.-Two quarts of boiled oil, one and a half pound of litharge, three quarters of a pound of gum shellac, one ounce of gum. All boiled together, and stirred up till dissolved, then take off the fire and add two quarts of turps. When settled, strain into a bottle and eork for ase.
Common Oil Varnish.-Take one gallon of quick drying oil, two pounds of resin, and one quart of turpentine; put the resin with the drying oil into a varnish kettle, and let it dissolve in a gentle heat; take it from the fire and gradually pour in the spirits of turpentine. If too thick add more of the turpentine.
Transparent Varnish for Pictures.-Take the white of four egge and two onnces of loaf sugar; beat them up in lime water to the proper consisteney for varnishing.

For Varnishing on Wood, Unpainted.-Qnarter of a pint of wood naplitha, quarter of a pint of spirits of wine, four ounees of benzoin, four ounces of orange shellac, added all together. If not thick enough with those ingredients for your purpose, add more of the gums benzoin and shellac.

Waterproof Varnish, for Linen or Calico.-One pint of turpentine, one and a half pint of liuseed oil, seven ounces of litharge, one ounce of sugar of lead. Strain it, apply it with a brush, and dry it in the sun or in a warm place.

Instructions.-Oil of turpentine deadens the color of paints; varnishes, copal, \&e., brighten the color.

## SOLDERS.

For lead solder.-Melt 1 part block tin, and when tused, add 2 parts of lead. Use resin with it.

For tin solder.-Melt 4 parts of pewter, 1 part of tin, and 1 part bismuth together. Use resin with it.

## CEMENTS.

Glue.-Melt 1 lb . glue in 2 quarts warm water. For a glue that will resist the action of watcr, boil 1 lb . of glue in 2 quarts of skimmed milk. Pulverized chalk added to glue strengthens it.

Soft cement.-For boilcrs, stcam-pipes, \&c.: 4 parts red or white lead, ground in oil, with 2 or 3 parts iron filings.

Hard cement.-Mix iron borings or filings with salt water, then add a small quantity of sal ammoniac with water.

Mydraulic cement-for cisterns, sewers, cellars, pipes, \&c., is purchased by the barrel, which contains 300 lbs .

Dry cement-which will resist the weather equal to marble, is made of 2 parts sifted ashes, 3 parts clay, and 1 part sand, mixed with oil, and applied while soft.

Brown mortar, for masonry, brick-work, deo.
Mix 1 part lime, 2 parts sand, a small quantity of hair with water.

## CONTENTS.

## ©LPMABETIOALLYAREANGED.

A.
Aocounts, Keeping of ..... 227
Lecounts by single entry, with examples ..... 227
" double " " " ..... 229
Form of bill of sundries ..... 231
" receipt in full. ..... 237
" check ..... 238
u due-bill. ..... 238
" promissory note ..... 238
" " " with surety ..... 238
"d draft or bill of exchange ..... 239
Explanation of all the above ..... 240
Alconol, Proportion of, in Liquors ..... 100
Angular Measdre, Illustrated ..... 23
Animals, Life and Increagr of. ..... 197
Table, showing the period of reproduction and gestation of domes-tic animals and fowls198
Table, showing when forty weeks (the period of gestation in a cow) will expire, from any day througkout the year. ..... 109
Growth and life of animals ..... 199
PAGE
Anmaxs, Age or, Illustrated ..... 201
To find the age of a horse ..... 201
" " " " " cattle ..... 206
" a " " " aheep ..... 208
" " " " " goats ..... 208
Anmals, Food of, Illustrated ..... 212
Table, showing the comparative difference between good hay and other food for stock-being the results of experiments ..... 212
Table, showing the comparative difference between good hay and other food for atock-being the mean between experiment and theory ..... 213
Table, showing the quantity of food different animals require per day to each 100 lbs of their live weight. ..... 213
Table, showing the daily food required by the ox ..... 214
Table, showing the effects produced by an equal quantity of dif- ferent kinds of substances as food for sheep ..... 215
Antmals, Computen Weight of. ..... 209
Anntitims. ..... 219
Table, showing the amount of $\$ 1$ for any number of yeara from 1 to 24 , at 5 and 6 per cent. compound interest ..... 219
Table, ahowing the present worth of $\$ 1$ annuity at 5 and 6 per cent compound interest for any number of years from 1 to 34 , ..... 218
Apotimeanies' Weigit, table ..... 158
" fluid measure, table. ..... 156
Arithmetioal Cuaraoters, Explanation of ..... 14
Artifiolal Manures ..... 357
Avoirdupois Weigrt, table ..... 152

## CONTENTS.

## R.

Baranoes, false, Illustrated ..... 84
To detect false balances ..... 84
To find the true weight. ..... 84
Board Fenoe (see fences) ..... 125
Board Measure ..... 62
Books, Sizes or (see printing) ..... 260
Bonds-U. S. Bonds ..... 242
Boyes, Capadity of ..... 81
Brick-work (see masonry) ..... 276
Botter, Properties and Composition of. ..... 387
Butter and Cueese-Makina. ..... 301
The butter dairy. ..... 301
The milk room ..... 391
Cleanliness. ..... 392
Setting the milk. ..... 392
Cream-churning. ..... 393
Packing for market. ..... 394
Test of good butter. ..... 396
The cheese dairy ..... 397
Quality of cheese. ..... 397
To construct an ice-house for the dairy. ..... 399
Analysis of butter ..... 390
$\omega_{0}$
Capacitt or Boxes. ..... 81
" Waoox-Beds, Illustrated. ..... 82
Cask-andoina, Illustrated. ..... 78
To find the contents of a cask by three dimensions.
FA6厚
" " " " " " " four " ..... 79
Cattle, Sorlino ..... 401
Cattle, to find tife Aoe of ..... 206
Cattle, Computed Weiget of, Mlustrated. ..... 200
Table, showing the compute weight of cattle from their girth, \&c. ..... 211
Cements. ..... 473
Glue. ..... 473
Soft cement. ..... 473
Hard cement ..... 473
Hydraulic cement ..... 473
Dry cement ..... 473
Brown mortar for masonry, brickwork, \&ec. ..... 473
Circles ..... 206
To find the circumference of a circle. ..... 296
" " diameter u ..... 296
" " area ..... 296
To find the side of an equal square containing the same area as a given circle. ..... 297
To find the solidity of a sphere ..... 297
Table, showing the areas of circles and the sides of thoir equal squares, from 1 to 100. ..... 298
To find, by means of the table, the square or circle that will ion- tain the area of $a$ board or surface of given length and widtin. 302Circular Measure, Illustrated.23
Cisterns, Illustrated ..... 86
To find the number of gallons in square or oblong cisterns. ..... 86
CONTENTS. ..... 479
To find the number of gallons in triangular cisterns. ..... $\stackrel{89}{86}$
" " " $\quad$ circular " ..... 87
Table, showing the contents of circular cisterns from 1 foot to 25 feet in diameter for each 10 inches in depth ..... 87
To find the number of gallons in tub-shaped cisterns. ..... 88
To ascertain the size of cisterns adapted to roofs ..... 89
Table, showing the contents of circular cisterns in barrels for each foot in depth ..... 90
To construct filtering cisterns to furnish pure water for domestic use. ..... 91
Charceal, to prepare. ..... 115
Cheese Dairy (see butter and cheese) ..... 397
Cloti Measure, table. ..... 169
Core. ..... 118
Commerclal Abbreviations ..... 18
Compound Interest, table of. ..... 218
Contents ..... 475
Corn on tife Cob in Cimbs, to measure, Illustrated. ..... 57
When the crib is equilateral ..... 57
When the crib is flared at the sides ..... 58
Cofin, relation of Pork to ..... 194
Table, showing price of pork per lb. at different prices per bushel for corn ..... 194
To find the price of pork, the price of corn being given ..... 195
To find the price of corn, the price of pork being given. ..... 195
Grops, Rotation or ..... 378
Rotation of field crops. ..... 385
Rotation of garden crops. ..... 386
Chemical theory of rotation ..... 381
Cropg, Nutritive Valoe of. ..... 190
Cobio Meastre, table. ..... 171
To find the cubic contents of any solid body ..... 171
Cobes and Cobe Roots, table of, from 1 to 1000 ..... 303
Cultifation, Steam, Illustrated. ..... 450
D.
Decimals-Fractions. ..... 257
To reduce fractions to decimals ..... 257
To add decimals. ..... 257
To subtract decimals. ..... 258
To multiply decimals ..... 258
To divide decimals. ..... 259
Table of useful decimals ..... 259
Decrease and Expeotation of Human Life ..... 216
Table, showing the decrement and expectation of human life ..... 216
Table of St. Maur. ..... 217
Definitions of Mathematioal Forms ..... 292
Parallel Lines ..... 292
An Angle. ..... 292
A. Right Angle ..... 292
An Acute Angle ..... 292
An Obtuse Angle. ..... 292
A Surface ..... 292
A. Triangle ..... 292
The Altitude. ..... 292
CONTENTS. ..... 481
A. Right Angle Triangle
PAGE
A Parallelogram ..... 293
A Rectangle ..... 293
A Square ..... 293
A Trapezoid ..... 293
The Altitude ..... 293
A Circle ..... 293
The Circumference ..... 293
The Diameter ..... 293
The Radius ..... 293
A Solid ..... 294
A Prism ..... 294
Triangular Prism ..... 294
Hexagonal Prism ..... 204
Cylinder. ..... 204
Cube ..... 294
A Pyramid ..... 294
The Altitude. ..... 294
A Cone ..... 294
A Frustum ..... 295
An Ellipse. ..... 295
A Sphere ..... 205
A Spheroid ..... 205
Depti of sowno Wheat ..... 193
Diet, Solid Matter and Water in Articles of ..... 198
Table, showing the proportion of solid matter and water in 100parts each of various articles of diet.198
Drannina Tile. ..... ${ }_{362}$
How to make a drain. ..... 364
Different kinds of tile used. ..... 364
Boynton's improvement in making tile ..... 365
Rules to be observed in making tile drains ..... 367
Size and quantity of tile required to the acre. ..... 368
Tools used in laying drain tile ..... 370
How to make drain tile, Illustrated. ..... 373
Why should land be drained. ..... 373
The effects ofdrainage. ..... 374
Dry Measure, table. ..... 162
E.
Earti, Pregsure of, aaainst Walls ..... 255
Enalisn Moner, table ..... 149
" Gold and silver coin ..... 149
" Copper coin. ..... 150
Canadian currency ..... 150
Exiatstion or Soils (see soils, exhaustion of) ..... 320
Expectation and Decrease of Heman Life. ..... 216
Table, showing the decrement and expectation of human life. ..... 216
St. Maur's Table. ..... 217
F.
False Balances, Mlustrated. ..... 84
To detect false balances. ..... 84
To find the true weight ..... 84
Fences and Fenoina, Illustrated ..... 125
BCONTENTS.483
Rail fence ..... PAGIITable, showing the number of rails, stakes, and riders requiredfor each 10 rods of fence.127
Post and rail fence ..... 128
Table, showing the number of posts and rails required for each 10 rods of post and rail fence. ..... 128
Post and board fence ..... 128
To find the number of feet of boards required for each rod of post and board fence. ..... 129
To find the number of posts required for a given length of post and board fence. ..... 129
Fraoes, Hedae (see hedge plants) ..... 130
Fences, Wire. ..... 134
Food of Anlmals (see animals, food of), Illustrated: ..... 212
Food for Stock, Steamina. ..... 415
Fractions (see decimals) ..... 257
Table of useful decimals ..... 259
Freigirs, By-laws of N. Y. Chamber of Commerce. ..... 442
Fuel ..... 113
Table, showing the comparative values of fire woods. ..... 113
Table, showing the weights per cubic foot of different hinds of coal. ..... 115
Properties of charcoal. ..... 116
To prepare charcoal. ..... 115
Table, showing the number of parts of charcoal afforded by 100 parts of different kinds of wood. ..... 118
Coke. ..... 118
Table, showing the weight, evaporative powers for weight, bulk, PAGI and character of fuel. ..... 119
Combustible matter of fuel. ..... 120
Table, showing the heating power of different ccmbustibles. ..... 121
Table, showing the effects of heat upon certain bodies ..... 121
Table, showing the relative value of different fuels by weight. ..... 121
Table, showing the number of gallons of water which may be lifted to various heights by the consumption of 112 lbs . of coal 122
Table, showing the price of parts of a cord of wood at givenrates per cord. . . . . . . . . . . . . . . . . . . . . . . . .... 123
G.
Garden Seeds, quantity of, to plant, \&o. ..... 192
Gardening for Mareet. ..... 428
Size, arrangement, and equipment of the garden ..... 430
Construction and care of the hot-bed ..... 432
Profits of the same ..... 434
Management of field crops. ..... 435
Vegetables best adapted for market. ..... 437
Harvesting the crops ..... 440
Prices of early vegetables. ..... 441
Profits of the business ..... 446
Gavaina, Cask, Illustrated. ..... 78
Glue, to melt and apply ..... 473
Goats, to find tie age of. ..... 208
Goverpuent Land Measure ..... 50
Grain, Meast zembnt of, in Granaries, Mlustrated. ..... 60
contents. ..... 485
Grain, Wetont of, as established by the Legislatures of the differ- ent States ..... 189
Grain, per cent. of Oil in. ..... 191
Grain, quantity of, to sow per agre, \&o ..... 192
Gravity, Speoifio, Illustrated ..... 182
To find the specific gravity of a body. ..... 183
" " " " " lighter than water ..... 183
Toreduce the gravity of a body to its weight in lbs. per cubic foot ..... 184
Table, showing the specific gravity of various bodies ..... 185
To find the weight of a cubic foot of substance, the specific grav- ity being given ..... 185
To find the number of cubic feet in any irregular body ..... 186
Table, showing the weight of a cubic foot of different substances ..... 187
H.
Hay, Measurement of, Illustrated ..... 51
To find the number of tons of hay raked into windrows. ..... 52
" " " " " in a mow...................... 52
" " " " " in old stacks............... 53
" " " " " in long, square stacks....... 53 ..... 53
" " " " " when taken out of old mows
or stacks. ..... 54
Table, showing the price per cwt. of hay at given prices per ton ..... 54
An easy mode of ascertaining the value of a given number of lbs. of hay at a given price per ton of 2000 lbs ..... 55
Heat, Effeots of, on different Bodies. ..... 121
Heating inolosen Air ..... 122
P40표
Heatina by Stean-pify ..... 123
Hidor Planta. ..... 130
Directions for setting and trimming. ..... 131
To preserve plants during the winter ..... 131
Setting evergreens. ..... 131
Osage orange. ..... 132
Honey locust. ..... 132
Buck thorn. ..... 132
Privit. ..... 132
Hawthorn ..... 133
Norway spruce. ..... 133
Arbór vito ..... 133
Hemlock. ..... 133
Hop, Analivsis or, Mllustrated. ..... 323
Horae Power, Illustrated ..... 136
Horse Power, origin and definition of. ..... 139
Table, showing the labor one horse is able to perform at different rates of speed on canals, railroads, and turnpikes ..... 140
Table, showing how much one team and plough will perform in a day in acres and tenths. ..... 141
Draught of a horse. ..... 136
Power of the horse when aided by horse-mill. ..... 136
Travel per day of the horse. ..... 136
Burden of the horse ..... 136
Endurance of the horse. ..... 139
To compute the power of a waterfall. ..... 139
" " " " of a steam-engine ..... 140
PagyTo find the age of the horse.
Food of the horse. ..... 213
Moder Paniting. ..... 460
Mtmaf Strengati. ..... 135
Hypraduce, Illustrated. ..... 93
The fundamental laws of hydraulics, \&c. ..... 93
To find the velocity of a stream issuing from a head of water. ..... 95
To find the bead, the velocity being given. ..... 96
To find the quantity of water that will issue from an opening, the dimensions of the opening and the head being given. ..... 96
To find the velocity of currents in ditches, sluices, brooks or rivers ..... 97
To find the volume of water discharged by drains, sluices, brooks, \&c., of given dimensions, in a given time. ..... 98
To find the velocity of water running through pipes. ..... 98
To find the quantity of water discharged through pipes ..... 99
To find the pressure of a fluid on the bottom of a vessel, cistern, or reservoir ..... 100
To find the pressure on the side of a vessel. ..... 100
Hydradlio Ram, tie, Illustrated ..... 103
To ascertain the quantity of water and the height to which it may be elevated by a given fall and volume of water ..... 105
Working results of water rams now in use ..... 106
Hydraclio Press, tife, Illustrated. ..... 110
I.
Ior House, to construct an ..... 399
Ice, Strenatil of ..... 271

## contents.

Illustrations, List of PAGI
Incuined Plane, Illustrated ..... 282
Interest, Simple ..... 218
Interest, Cempound ..... 218
Table of simple interest at 7 per cent. for each day to a month, from $\$ 1$ to $\$ 100$ ..... 222
Table of simple interest at 6 per cent. for each day to a month, from $\$ 1$ to $\$ 100$ ..... 224
Table, showing the interest of $\$ 1$ to $\$ 5,000$ from 1 day to 2000 days, at 6 or 7 per cent. ..... 220
Iron, weioit of square rolled, Illustrated. ..... 273
" " nound " ..... 275
K.
Keeping Accounrs (see accounts, keeping of) ..... 227
By single entry, with examples. ..... 227
By double entry, with examples. ..... 229
L.
Land, Measurement of, Illustrated ..... 43
When the field is a square, a parallelogram, a rhombus, or a rhom- boid ..... 44
When the field is triangular. ..... 44
When the field is a trapezium or trapezoid ..... 45
When the field is an irregular polygon ..... 45
When the field is long and the sides crooked and irregular ..... 46
When the field is long and the sides and ends crooked and irregular ..... 46
When the field is a circle ..... 47
CONTENTS.489
Plots containing an acre ..... Page
Table, showing the square feet and the feet square of the fractions of an acre. ..... 48

- Table, showing the number of hills or plants on an acre, for any distance apart, from 10 inches to 6 feet-the lateral and longi- tudinal distances being unequal ..... 48
Table, showing the number of plants, hills, or trees contained in an acre at equal distances apart, from 3 inches up to 66 feet ..... 49
Land Measure, Gevernment. ..... 50
Latas, size of, number in a bundle, \&c ..... 279
Latitude ..... 24
Lead Pipe, weiont of ..... 112
Table, showing the weight of lead pipe per yard from $\frac{1}{4}$ to 41 inches diameter ..... 112
Table, showing the weight of very light lead pipe. ..... 112
Lever, time, Illustrated ..... 279
Life and Inorease of Animals, Illustrated. ..... 197
Table, slowing the period of reproduction and gestation of ani- mals and fowls. ..... 198
Table, showing when forty weeks (the period of gestation in a cow) will expire from any day throughout the year. ..... 199
Growth and life of animals. ..... 199
Life, Degrease and Expectation of ..... 216
Table, showing the decrement and expectation of life ..... 216
Table of St. Maur ..... 217
Ligetming Rons, Illustrated ..... 251
To construct a lightning-rod. ..... 251


## CONTENTS.

Conductors of electricity PAGENon-conductors253
Dr. Franklin's theory ..... 253
Liquons, phoportion of Alconol in ..... 190
List of Illugtrations. ..... 17
Logs reduced to Inod-board Measube. ..... 70
Table, showing the number of feet (board measure) of inch boards contained in round saw-logs of various dimensions ..... 71
Lonartude (see seasons, \&c.), Illustrated. ..... 19
Long Measure, table ..... 167
M.
Manures. ..... 32!
The use of manures ..... 328
Rules in deciding what manures should be used. ..... 331
Classification of manures. ..... 332
Mineral manurcs ..... 332
Vegetable manures ..... 332
Animal manures. ..... 332
Analysis of fish-guano ..... 332
Analysis of Peruvian guano. ..... 333
Analysis of Bolivian guano ..... 333
How to selcet a good a:ticle of guano. ..... 334
How to apply guano ..... 334
Analysis of bone (crushed) manure ..... 335
Table, showing the comparative value of animal manures, with farm-yard manure as the standard ..... 335
CONTENT8. ..... 491
Decomposed vegetables as manures FAGE
Distinction between animal and vegetable manures ..... 336
Table, showing the relative values of decomposed vegetables as manures from the inorganic matter they contain ..... 336
Table, showing the relative value of decomposed vegetables as manures from the nitrogen they contain ..... 336
Analysis of a manure-heap in the condition usually applied to the field ..... 337
Analysis of other specimens of fresh farm-yard manure ..... 338
Analysis of green sand marl (of New Jersey) ..... 340
"Digestion and its products". ..... 341
Value of liquid manures ..... 344
Poudrette and urate. ..... 345
Analysis of night-soil. ..... 346
The dry earth system. ..... 347
Invention of Rev. Mr. Moule. ..... 347
To construct earth closets and their use. ..... 348
Table, showing the effect produced on the quantity of the crop by equal quantities of different manures applied to the same soil ..... 351
Table, showing the comparative increase of corn by different fertilizers ..... 350
Moisture absorbed by different manures. ..... 351
Table, showing the number of loads of manure and the number of heaps to each load required to each acre, the heaps at given distances apart. ..... 352
Weight of manure per cubic foot. ..... 353
Load of manure, how much it is
pagn
To find the number of loads of manure required to the acre for a given number of lbs. per square foot ..... 354
Manures, Artificial. ..... 354
Analysis of Mape's improved superphosphate of lime ..... 358
Analysis of Coe's superphosphate ..... 358
Analysis of Deburg's bone meal ..... 358
Analysis of bone dust ..... 359
Analysis of fish guano. ..... 359
Prices of standard fertilizers ..... 360
Average composition per cent. and per ton of various agricultural products. ..... 361
Markino Goons ..... 247
Market, Gardening for. ..... 446
Masonry, Illustrated. ..... 276
To find the number of perches in stone walls. ..... 276
Brick-work ..... 277
Dimensions of bricks. ..... 277
To find the number of bricks in a wall ..... 277
Laths. ..... 278
Matenials, Strenatit of ..... 264
Tensile strength ..... 264
Table, showing the weight in lbs. necessary to tear asunder one square inch of various materials. ..... 264
To find the tensile strength ..... 265
Table, showing the strength of iron-wire rope and hempen cable ..... 266
To find the strength of cables ..... 266

## contents.

To find the strength of ropes and hawsers. ..... 267
Table, showing what weight hemp rope will bear with safety ..... 267
Strength of metal and wooden rods ..... 267
IIempen cords ..... 268
Lateral or transverse strength ..... 268
Table, showing the transverse strength of timber ..... 268
Tables, showing the transverse strength of iron ..... 269
To find the transverse strength when the bar or beam is fixed at one end, and the load applied at the other ..... 269
When the bar or beam is fixed at both ends and the weight applied in the middle ..... 270
When the bar or beam is supported at both ends, and the weight applied in the middle. ..... 270
Table, showing the resistance of materials to crushing ..... 271
Strength of ice ..... 271
Mathematioal Fonms, Definitions of, Illustrated ..... 292
Measurement of Land (see land, measurement of), Illustrated ..... 43
" Hay (see hay, measurement of), Illustrated ..... 51
" Grain in Granarieg, Mlustrated ..... 60
" Timber (see timber measurement), Illustrated ..... 61
Measures and Weionts, tables or D. S. (see weights and mea- sures). ..... 145
Meagures of Capacity compared. ..... 163
Tables of English weights and measures ..... 163
Megianioal Powerg, Mlustrated ..... 279
The lever, Illustrated ..... 279
The inclined plane, Illustrated ..... 282
494 CONTENTB.
The wheel and the axle ..... PAOI
The wedge, Illustrated ..... 286
The screw, Illustrated. ..... 288
The pulley, Illustrated ..... 290
Metals, fusing heat of. ..... 121
Metrio System of Weiguts and Measures ..... 173
" " origin and bistory of. ..... 173
" " countries that have adopted the ..... 173
" " act of Congress authorizing. ..... 174
" " formation of tables. ..... 176
" "t table of linear measure. ..... 177
" " table of square measure ..... 178
" " table of cubic or solid measure ..... 179
" " table of dry and liquid measure. ..... 179
" " table of weights ..... 180
" " table of 'angles. ..... 181
" " tables of equivalents. ..... 181
Milk, Properties and Composition of ..... 387
Analysis of milk ..... 387
Table, showing the effects of various degrees of heat in making new milk cream ..... 387
Analysis of the milk of different animals ..... 300
Misoellaneous Weigdts. ..... 153
Mixing Paints ..... 460
Money (see United States Money) ..... 145
Mortar, brown, for Masonry, Brick-work, \&o ..... 463
CONTENTS. ..... 495
N.
Netritite valee of dertain Crops. ..... 190
Table, showing the nutritive value of certain crops. ..... 190
o.
Oir, per cent. in different seeds, grain, \&c. ..... 191
Table, showing the per cent. of oil in different seeds, grain, \&c.. ..... 191
Osage Oranae-hedge plants. ..... 130
P.
Paintina ..... 460
House painting. ..... 460
Mixing paints. ..... 463
A beautiful white paint ..... 463
A pure white paint. ..... 464
Common white paint. ..... 464
For knotting ..... 464
Common flesh color. ..... 464
Fine flesh color. ..... 464
A beautiful color for carriages. ..... 464
Cream color. ..... 464
Pearl gray. ..... 464
Fawn color. ..... 464
Blue ..... 465
Buff ..... 465
Straw ..... 465
Drab ..... 465
Steel. ..... 465
PAGI
Purple ..... 465
Violet. ..... 465
French gray. ..... 465
Silver. ..... 465
Gold. ..... 465
Dark chestnut. ..... 466
Salmon ..... 466
Peach blossom ..... 466
Drab ..... 466
Lead ..... 466
Chocolate. ..... 466
Dark red. ..... 466
Orange ..... 466
Bright yellow ..... 466
Dark yellow ..... 467
Light yellow. ..... 467
Olive green ..... 467
Light grean. ..... 467
Grass greean. ..... 468
Invisible green. ..... 468
Bronze. ..... 468
Imitation of gold. ..... 468
Tar paint. ..... 468
Paint driers. ..... 468
Milk paint. ..... 469
Lime whitewash. ..... 469
Italian marble. ..... 470
Imitation granite. ..... 471
Oak varnish ..... 471
Oil varnish. ..... 471
Varnish for pictures ..... 471
Varnish for unpainted wood. ..... 472
Waterproof varnish for cloth, \&c ..... 472
Penduldas (see time, seasons, \&c.), Illustrated. ..... 31
Plank Measure. ..... 62
Table, showing the contents (board measure) of planks of various dimensions. ..... 67
Plants (see bedge plants) ..... 130
Pork, relation of Corn to. ..... 194
Tablc, showing the price of pork per lb ., at diferent prices per bushel for corn. ..... 194
To find the price of pork per lb ., the price of corn bcing given. ..... 195
To find the price of corn, the price of pork being given. ..... 195
Post and Rail Fence (see fences), Illustrated. ..... 128
Post and Board " (see fences) ..... 128
Powers, tie Mecilanioal, Illustrated ..... 279
Practioal Reader, to tie ..... 11
Preface ..... 7
Pressure of Eartil aqainst Walls ..... 255
Printino, faots about. ..... 260
The different types used in book printing. ..... 260
The number of ems made by different type. ..... 261
Press-work ..... 262
Sizes of books. ..... 262
Table, showing the number of leaves and pages from the folding FLGI of a sheet ..... 263
Properties and Composition of Milk, Butter, \&o. ..... 387
Proportion of Alcomol in Liquors. ..... 190
" Weiget to Bulk of vamous Substanoes. ..... 193
Pulley, tiee, Illustrated. ..... 200

## R.

Rail Fence, Illustrated ..... 126
Rain, aperage fall of (see temperature and average fall of rain).. ..... 37
Relatife value of Gold and Currency. ..... 243
Table, showing the greenback value of $\$ 1$ at the different quita- tions of gold ..... 243
Highest quotation of gold in New York during the civil war. ..... 244
" " " " Richmond " " " " ..... 244
English bonds and consols, explanation of. ..... 244
"Selliug Short," explanation of. ..... 245
"Seller's Option," " " ..... 245
"Buyer's Option," " " ..... 245
Stock Quotations, " " ..... 246
"Bull," commercial definition of. ..... 245
"Bear," " " " ..... 245
"Stag," " " " ..... 245
Rods, Licitinina ..... 251
To construct a lightning-rod ..... 251
Roots, Square and Cube, table of ..... 302
CONTENTS. ..... 499
Rotation of Crops
page ..... 378
" field crops ..... 385
" garden crops ..... 386
$\mathbf{S}$.
Scantlina Measure ..... 72
Table, showing the contents (board measure) of scantling of various dimensions ..... 72
Screw, ties, Illustrated ..... 288
Seasons, Tine, \&c. (see time), Illustrated. ..... 19
Seeds, weigit of, as established by the Legislatures of the different States ..... 189
Seeds, oil per oent. in ..... 191
" quantity of, to sow or plant per acre, \&c. ..... 192
Sheep, to find tae age of ..... 208
Soiling Cattle ..... 401
Experiments by the author ..... 402
Arrangement of crops for soiling. ..... 405
Arguments in favor of soiling ..... 409
Soils, Exiatustion of ..... 320
Table, showing the organic substances removed from the soil in 1000 lbs . each of the various crops ..... 321
Table, showing the inorganic matter removed from the soil in 1000 lbs. each of the various crops ..... 321
Table, showing the kinds of inorganic matter removed from the soil in 1000 lbs . each of the various crops ..... 322
Analysis of the hop, showing the elements it removes from the soil. ..... 323
Table, showing amount of inorganic matter removed from the soil by ten bushels of grain ..... 324
Soils. ..... 311
Classification of soils ..... 312
To analyze soils ..... 313
General results of analytical examinations of soils ..... 316
Table, showing the composition in 1000 parts of different soils. ..... 317
Analytic table of three very fertile soils ..... 317
Analytic table of arable lands of great fertility ..... 318
Depth of soil-its importance. ..... 318
Table, showing the weight per culic foot of the different kinds of earth ..... 319
Solders ..... 473
Lead solder. ..... 473
Tin solder ..... 473
Solid Matter and Water in articles of Diet. ..... 188
Table, showing the proportion of solid matter and water in 100 parts each of the various articles of diet. ..... 188
Specifio Gravity (see gravity), Illustrated. ..... 182
Square Measure, table. ..... 165
Squares and Square Roots, table of, from 1 to 1000. ..... 303
Steamina Food for Stock ..... 415
Report of the Department of Agriculture. ..... 416
How to make a steaming apparatus ..... 421
Prindle's Agricultural Steamer and Cauldron (Illustrated). ..... 423
contints. ..... 501
Advantages of cooked food
PaisSteam Celitivation, Illustrated450
Advantages claimed ..... 452
Report of the Royal Agricultural Society. ..... 455
Steam Power, rulez for computing ..... 140
Stock, Steaming Food for ..... 415
Stoci Quotations ..... 246
Strenotif, Hunan ..... 135
Strenati of Materiats (see materials, strength of) ..... 264
Success in Business. ..... 246
Short credits. ..... 246
Small profits. ..... 246
Economy in expense. ..... 247
Marking goods. ..... 247
Surveyors' Measure, table ..... 168
T.
Temperature and fadl of Rain, averaje of ..... 37
Table, showing the average temperature of the four seasons at points on the Pacific and Atlantic coasts, and the interior of this continent ..... 37
Periodical rains, region of. ..... 38
Frequent. rains, ..... 39
Scanty rains, ..... 39
Table, showing the latitude and longitude, the elevation above the level of the sea, the mean annual temperature, and the average fall of rain in various places in the United States. ..... 49
Tile Drainina (see draining) ..... 362
zagt
Tinber, Measurement of, Mlustrated. ..... 61
Board measure ..... 62
To ascertain the contents (board measure) of boards, scantling, and plank ..... 62
Table, showing the contents of inch boards from 6 inches to 30 broad, and from 4 to 24 feet long ..... 63
Square timber ..... 65
To measure square timber. ..... 65
Plank measure ..... 62
Table, showing the contents (board measure) of planks of various dimensions. ..... 67
Round and square timber. ..... 64
To measure round timber, Illustrated. ..... 65
Logs reduced to inch-board measure ..... 70
Table, showing the number of feet (board measure) of inch boards contained in round saw-logs of various dimensions. ..... 71
Time, Seasons, \&c., Illustrated. ..... 19
To reduce longitude to time ..... 19
Time, apparent and mean. ..... 21
To ascertain the length of the day and night. ..... 21
Pendulums, Illustrated ..... 31
To find the length of a pendulum for a given number of vibra- tions per minute ..... 31
To find the vibrations per minute, the length of the pendulum being given ..... 32
Measure of time, table, Illustrated. ..... 25
Division of the calendar year ..... 20
CONTENTS.503
Old style (O. S.) and new style (N. S.) ..... pant
Decade, what period it is. ..... 27
Century, " " " ..... 27
Lunar Cycle, what it is ..... 27
Golden Number, what it is. ..... 27
Solar Cycle, what it is ..... 28
To find the lunar cycle or golden number ..... 28
Table, showing the number of days from any day in the month to the same day in any other ..... 28
Table, finding the number of days between two dates. ..... 29
Table, showing the planets, \&c., in the solar system. ..... 27
Distance of the planets, and size compared with the earth ..... 32
U.
United States Bonds, explanation of. ..... 242
Five-Twenties ..... 242
Ten-Forties. ..... 242
Seven-Thirties. ..... 242
Six per cents. of ' 81 ..... 243
United States Money, table. ..... 145
" " Gold coin ..... 146
" " Silver coin. ..... 147
" ${ }^{4}$ Copper coin ..... 143
Alloy of Gold and Silver. ..... 147
$\boldsymbol{\nabla}$.
Velocity, table of ..... 189

## W.

$\qquad$Whoes224
Table of wages at $\$ 3$ to $\$ 25$ per month of 26 working days ..... 224
Waoon-beds, Capacity of, Illustrated. ..... 82
'ro find the contents of wagon-beds. ..... 82
Walls, pressure of Eartil aganst. ..... 255
Water Ram, Illustrated. ..... 103
Weatier ..... 33
Table, for telling the weather through all the lunations of the year ..... 33
Wedge, trie, Illustrated. ..... 286
Weighis and Measures, tables of U. S., Illustrated ..... 145
Long measure. ..... 167
Hair's breadth. ..... 168
Gunter's chain ..... 168
Ropes and cables. ..... 168
Geographical and nautical measure ..... 169
Miscellaneous long measures. ..... 168
Measures of circles. ..... 23
Measures of surfaces. ..... 165
Land measure. ..... 43
Paper measure ..... 263
Liquid measure ..... 160
Standard gallon measure. ..... 161
Dry measure. ..... 162
Standard bushel measure. ..... 162
Imperial or British bushel. ..... 163
Miscellancous dry measures ..... 163
CONTENTS.505
Measure of weights, avoirdupois. ..... fagTroy weight.156
Troy weight reduced to avoirdupois ..... 157
Diamond measure ..... 157
Measure of time. ..... 25
Measure of value ..... 145
Standard of gold and silver ..... 148
Miscellaneous weights and measures ..... 153
Heaping measure ..... 163
Barrel measure. ..... 153
Ton weight and ton measure. ..... 172
A sack of wool. ..... 155
A pack of wool. ..... 155
A truss of hay ..... 56
A. load of hay ..... 56
A bale of hay ..... 56
A firkin of butter. ..... 155
A bale of cotton ..... 155
Weigitr, Compute, of Cattle, Illustrated ..... 200
Weiont of Lead Pipe. ..... 112
Weights of Grain, Seeds, \&o ..... 180
Table, showing the weight of grain, seeds, \&c., as established by the Legislatures of the different States ..... 189
Weight of Square Rolled Iron. ..... 273
Table, showing the weight of square rolled iron from $\frac{1}{16}$ inch to 12 inches, and 1 foot long. ..... 273
Weight of Round Rolled Iron ..... 275
Table, showing the weight of round rolled iron from $\frac{1}{6}$ mech to12 inches diameter and 1 foot long275
Wetcitt, proportion of, to bule of variods substances. ..... 193
Table, showing the weight per cubic foot of various substances, and the number of cubic feet required to make a ton of each.. ..... 193
Wereat, deptim of Sowing. ..... 193
Wheel and Axie. ..... 284
Wmitenasi ..... 469
Wind. ..... 35
Table, showing the force and velocity of wind. ..... 36
To find the force of wind acting against a surface ..... 35
Wire Fences. ..... 134
Wood Measure, Illustrated ..... 62
To ascertain the number of cords in a given pile of wood. ..... 62
mann
spec
coll
S
501
$c 86$
1868




[^0]:    * The size of wire is graded from No. 1, and upwards. No. 9 is the common telegraph wire.

[^1]:    * Note.-The exact woight of an avoirdupois dram is $27 \frac{1}{3}$ troy grains.

[^2]:    * The $a$ in deca and myria, and the o in hecto and kilo are dropped when

[^3]:    * Authorized by Act of Congress, July 27, 1866.

[^4]:    * Mr. Barnum's elephant, weighing 4700 lbs , was found to consume 100 lbs. of hay and 1 bushel of oats per day.

[^5]:    Expianation - Find the amonnt in the left hand column then follow the live of figures until you come to the column giving the number of days at the heal and yon have the amount of days to one month; 1.en ly adding together, you have the interest of as many months as required on amounts from one dollar to one hundred.

[^6]:    * As the right anglo contains $90^{\circ}$, it follows that the acuto angle contains less, and the obtuse angle more, than $90^{\circ}$.

[^7]:    * A cylinder is a regular polygon, or prism, with an inflinite number of sides.

[^8]:    * Included in potash.

[^9]:    * Equal to phosphate of lime $56 \frac{1}{3}$ lbs.

[^10]:    * This account of digestion is not, perhaps, strictly accurate in a phyeiological point of view, but it is sufficiently so to give an elementary understanding of the character of excrement as manure.

[^11]:    * For more particular information on this subject, the reader is referred to a pamphlet entitled "Earth Closets, how to make and how to use them," published by the N. Y. Tribune Association.

[^12]:    ＊Midalings，Canielle．
    $\dagger$ Shipstuff．

[^13]:    * Talpa, or the Chronicles of a Clay Farm.

[^14]:    ** Country Life, page 435.

[^15]:    * The Natural Laws of Husbandry, page 227.

[^16]:    * Agricultural Chemistry, page 493.
    $\dagger$ " Corn, in English agricultural writing, is a general term corresponding to our grain."

[^17]:    * We have known those who would not work the brine out of the butter "because," say they, "it will weigh less;" mistaken shrewdness, to gain a penny they lose a pound. That it is necessary to leave brine in the buttor to " keep it" is a great mistake.

[^18]:    * Pails or tubs after being once used, if properly cleansed, are preferable to new ones.

[^19]:    * To make this description more complete, a few improvements which are contemplated for the coming year are spoken of as though now in operation.
    $\dagger$ Ogden Farm, Newport, R. I.

[^20]:    * The water is brought from a living spring and flows through galvanized iron pipes which form the connections between the bettoms of small iron troughs standing at the head of the partitions which divide each pair of stalls. The last trough overflows through a pipe near its top, and the water wells up to the level of this overflow in each trough of the series. By this simple arrangement, a constantly changing supply of water is kept always in front of the cattle.

